• Title/Summary/Keyword: 2D-nano

Search Result 739, Processing Time 0.028 seconds

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun;Pei, Yi-Rong;Piao, Huiyan;Vinu, Ajayan;Choy, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.417-428
    • /
    • 2016
  • In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.

Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5D/3D Integrated System

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2016
  • We propose nano-scale Cu direct bonding technology using ultra-high density Cu nano-pillar (CNP) with for high stacking yield exascale 2.5D/3D integration. We clarified the joining mechanism of nano-scale Cu direct bonding using CNP. Nano-scale Cu pillar easily bond with Cu electrode by re-crystallization of CNP due to the solid phase diffusion and by morphology change of CNP to minimize interfacial energy at relatively lower temperature and pressure compared to conventional micro-scale Cu direct bonding. We confirmed for the first time that 4.3 million electrodes per die are successfully connected in series with the joining yield of 100%. The joining resistance of CNP bundle with $80{\mu}m$ height is around 30 m for each pair of $10{\mu}m$ dia. electrode. Capacitance value of CNP bundle with $3{\mu}m$ length and $80{\mu}m$ height is around 0.6fF. Eye-diagram pattern shows no degradation even at 10Gbps data rate after the lamination of anisotropic conductive film.

Growth of 3D TiO2 Nano-wall-like Structure with High Effective Surface Area (높은 유효 표면적을 갖는 3차원 TiO2 나노벽 유사구조의 성장)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • Nano-materials with high effective surface areas have been applied to functional materials, such as high sensitive gas sensors and biosensors and high-efficiency catalytic materials. In this study, titanate sheets with a 3D nano-wall-like structure, high effective surface area, were synthesized vertically to the substrate by a chemical bath deposition (CBD) process using a Ti sheet and urea. The synthesis temperature and synthesis duration time were controlled to the optimal conditions of a 3D nano-wall-like structure in the CBD process. The synthesized ammonium titanate sheets with a 3D nano-wall-like structure were annealed in air to transform to TiO2 with a 3D nano-wall-like structure for various applications. As a result, the optimal temperature in the CBD process for the synthesis of a uniform ammonium titanate sheet with a 3D nano-wall-like structure was 90 ℃. TiO2 with a 3D nano-wall-like structure was obtained from the ammonium titanate sheet with a 3D nano-wall-like structure by annealing above 550 ℃ for three hours. In particular, TiO2 with a 3D nano-wall-like structure with a dominant rutile phase was obtained by post-annealing at 700 ℃. On the other hand, damage to the 3D nano-wall edge was observed after 700 ℃ post-annealing.

Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes

  • Oh, Byul-Nim;Wu, Qiong;Cha, Mi-Sun;Kang, Hee-Kyung;Kim, Jin-Ah;Kim, Ka-Young;Rajkumar, Eswaran;Kim, Jin-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3223-3228
    • /
    • 2011
  • To quantify the presence of mercuric ions in aqueous solution, double-stranded DNA (dsDNA) of poly(dT) was employed using a light switch compound, $Ru(phen)_2(dppz)^{2+}$ (1) which is reported to intercalate into dsDNA of a right-handed B-form. Addition of mercuric ions induced the dehybridization of poly(dT)${\cdot}$poly(dA) duplexes to form a hairpin structure of poly(dT) at room temperature and the metal-to-ligand charge transfer emission derived from the intercalation of 1 was reduced due to the dehybridization of dsDNA. As the concentration of $Hg^{2+}$ was increased, the emission of 1 progressively decreased. This label-free emission method had a detection limit of 0.2 nM. Other metal ions, such as $K^+$, $Ag^+$, $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Fe^{3+}$, had no significant effect on reducing emission. This emission method can differentiate matched and mismatched poly(dT) sequences based on the emission intensity of dsDNA.

Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing (TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향)

  • Liu, Jun-Xing;Li, Pei-Qi;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

Two-Dimensional Arrays of Gold Nanoparticles for Plasmonic Nanosensor

  • Sim, Brandon;Monjaraz, Fernando;Lee, Yong-Joong;Park, So-Yeun
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.525-531
    • /
    • 2011
  • Two dimensional (2D) arrays of noble metal nanoparticles are widely used in the sensing of nanoscale biological and chemical events. Research in this area has sparked considerable interest in many fields owing to the novel optical properties, e.g., the localized surface plasmon resonance, of these metallic nanoarrays. In this paper, we report successes in fabricating 2D arrays of gold nano-islands using nanosphere lithography. The reproducibility and the effectiveness of the nano-patterning method are tested by means of spin coating and capillary force deposition. We found that the capillary force deposition method was more effective for nanospheres with diameters greater than 600 nm, whereas the spin coating method works better for nanospheres with diameters less than 600 nm. The optimal deposition parameters for both methods were reported, showing about 80% reproducibility. In addition, we characterize gold nano-island arrays both geometrically with AFM as well as optically with UV-VIS spectrometry. The AFM images revealed that the obtained nano-arrays formed a hexagonal pattern of truncated tetrahedron nano-islands. The experimental and theoretical values of the geometric parameters were compared. The 2D gold nano-arrays showed strong LSPR in the absorption spectra. As the nano-islands increased in size, the LSPR absorption bands became red-shifted. Linear dependence of the plasmon absorption maximum on the size of the gold nano-islands was identified through the increment in the plasmon absorption maximum rate for a one nanometer increase in the characteristic length of the nano-islands. We found that the 2D gold nano-arrays showed nearly seven-fold higher sensitivity of the absorption spectrum to the size of the nano-islands as compared to colloidal gold nano-particles.

Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy

  • Lang, Christian;Hiscock, Matthew;Larsen, Kim;Moffat, Jonathan;Sundaram, Ravi
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.131-134
    • /
    • 2015
  • Here we show how by processing energy dispersive X-ray spectrometry (EDS) data obtained using highly sensitive, new generation EDS detectors in the AZtec LayerProbe software we can obtain data of sufficiently high quality to non-destructively measure the number of layers in two-dimensional (2D) $MoS_2$ and $MoS_2/WSe_2$ and thereby enable the characterization of working devices based on 2D materials. We compare the thickness measurements with EDS to results from atomic force microscopy measurements. We also show how we can use electron backscatter diffraction (EBSD) to address fabrication challenges of 2D materials. Results from EBSD analysis of individual flakes of exfoliated $MoS_2$ obtained using the Nordlys Nano detector are shown to aid a better understanding of the exfoliation process which is still widely used to produce 2D materials for research purposes.

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

'AMADEUS' Software for ion Beam Nano Patterning and Characteristics of Nano Fabrication ('아마데우스' 이온빔 나노 패터닝 소프트웨어와 나노 가공 특성)

  • Kim H.B.;Hobler G.;Lugstein A.;Bertagonolli E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • The shrinking critical dimensions of modern technology place a heavy requirement on optimizing feature shapes at the micro- and nano scale. In addition, the use of ion beams in the nano-scale world is greatly increased by technology development. Especially, Focused ion Beam (FIB) has a great potential to fabricate the device in nano-scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the re-deposition effect due to the sputtered atoms. In recent years, many approaches and research results show that the re-deposition effect is the most outstanding effect to overcome or reduce in fabrication of micro and nano devices. A 2D string based simulation software AMADEUS-2D $(\underline{A}dvanced\;\underline{M}odeling\;and\;\underline{D}esign\;\underline{E}nvironment\;for\;\underline{S}putter\;Processes)$ for ion milling and FIB direct fabrication has been developed. It is capable of simulating ion beam sputtering and re-deposition. In this paper, the 2D FIB simulation is demonstrated and the characteristics of ion beam induced direct fabrication is analyzed according to various parameters. Several examples, single pixel, multi scan box region, and re-deposited sidewall formation, are given.

  • PDF

Synthesis of Novel H8-Binaphthol-based Chiral Receptors and Their Applications in Enantioselective Recognition of 1,2-Amino alcohols and Chirality Conversion of L-Amino acids to D-Amino acids

  • Jung, Hye-In;Nandhakumar, Raju;Yoon, Hoe-Jin;Lee, Sang-Gi;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1289-1294
    • /
    • 2010
  • Novel $H_8$-binaphthol-based chiral receptors appended with an uryl moiety (2a) and a guanidinium moiety (2b) have been designed and synthesized for the enantioselective recognition of 1,2-amino alcohols via reversible imine formation. The selectivities ($K_R/K_S$ = 9.8 ~ 19.4) of 2b in imine formation with 1,2-amino alcohols are higher than those of 2a ($K_R/K_S$ = 1.8 ~ 4.5). Similar efficiency trend have been observed in the conversion of L-amino acids to D-amino acids, i.e., the efficiency of the receptor 2b (D/L ratio: 4.3 ~ 10.1) is superior to 2a (D/L ratio: 4.0 ~ 8.7).