• Title/Summary/Keyword: 2D-LDV

Search Result 18, Processing Time 0.018 seconds

Experimental investigation on the turbulent elliptic jets by using a 3-D LDV system (3-D LDV 시스템을 이용한 타원제트의 난류특성에 관한 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2160-2170
    • /
    • 1991
  • Three-dimensional turbulent structures in the near field of elliptic jet were experimentally investigated by using a three-color, three-component Laser Doppler Velocimeter. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4*10$^{4}$. The turbulent characteristics of a sharp-edged elliptic nozzle with aspect ratio of 2 were analyzed along major and minor axis at X/De=2,3,5,7 and along the centerline up to X/De=14. Quantities measured at each point with the 3-D LDV system were three orthogonal velocity components, turbulent intensity, skewness, flatness, and Reynolds shear stress. The nondimensional mean velocities coincided well with the Schlichting's empirical curve with going downstream. Elliptic jet of AR=2 had two switching points at about X/De=2 and 16. The turbulent intensity along the minor axis was distributed widely than that along the major axis. In the near field, X/De<5, the Reynolds shear stresses of the inner part of the elliptic jet had negative value, which indicated the enhancement of entrainment toward the inner part.

Intake Flow Characteristics with SCV Open Ratio in a 4-Valve Direct Diesel Engine (4밸브 직분식 디젤엔진의 SCV 개구율에 따른 흡입유동특성)

  • 최승환;전충환;장영준;이진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.66-75
    • /
    • 1999
  • Many researchers have developed the measurement technique of in-cylinder flow. Recently, there are lots of studies on steady flow with different SCV geometries. In this study the flow characteristics of four-valve cylinder head were examined in a steady test rig for different SCV open ratios. Each swirl ratio of several SCV angle was quantified by swirl impulse meter and 2D-LDV measurement. The results showed that the swirl ratio was controlled between 2.3 and 3.8 based on SCV angles. The velocity distributions of in-cylinder flow field were measured by 2-D LDV test and visualized swirl and tumble flow pattern at different positions. In this engine , we found out that the swirl was dominant flow.

  • PDF

Measurements of Three-Dimensional Flow Using 3-D Laser Doppler Velocimetry (LDV를 이용한 3차원 유동 측정)

  • 이상준;백승조
    • Journal of the KSME
    • /
    • v.34 no.4
    • /
    • pp.262-276
    • /
    • 1994
  • 본 연구를 통하여 3차원 LDV 시스템의 측정기법을 개발하였으며, 측정결과의 신뢰성을 확인하 였다. 또한 이것을 타원제트 연구에 적용함으로써 그 응용 가능성을 확인하였다. 앞으로 3-D LDV 시스템을 사용하여 신뢰성 있는 측정결과를 얻기 위해서는 아래에 기술한 몇 가지 사항을 고려하여야 한다. 1) 3차원 레이저 유속계는 정교하고 복잡한 광학시스템으로 정확한 배열을 요구한다. 광학계와 실험장치의 좌표축이 일치하지 않으면 축방향보다 측방향(lateral) 속도변동 성분에 큰 영향을 준 다. 2) LDV 측정에서 속도편심을 줄이기 위해서는 적당한 출력의 레이저, 적절한 신호처리(signal conditioning), 실험조건에 알맞는 입자를 선정하여야 한다 3) 입자를 연속적으로 균일하게 공급하여야하며 신호분석기 조작에 익숙하여 도플러신호의 질을 최적화하여야 한다.

  • PDF

Quantification of Volumetric In-Cylinder Flow of SI Engine Using 3-D Laser Doppler Velocimetry ( II )

  • Yoo, Seoung-Chool
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.47-54
    • /
    • 2007
  • Simultaneous 3-D LDV measurements of the in-cylinder flows of three different engine setups were summarized for the quantification of the flow characteristics in each vertical or horizontal plane, and in entire cylinder volume. The ensemble averaged-velocity, tumble and swirl motions, and turbulent kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each engine setup). The better spatial resolution of the 3-D LDV allows measurements of the instantaneous flow structures, yielding more valuable information about the smaller flow structures and the cycle-to-cycle variation of these flow patterns. Tumble and swirl ratios, and turbulent kinetic energy were quantified as planar and volumetric quantities. The measurements and calculation results were animated for the visualization of the flow, and hence ease to analysis.

Development of High Resolution Laser Doppler Vibrometer (고 분해능 레이저 도플러 진동계의 개발)

  • Kim, Seong-Hun;Go, Jin-Hwan;Kim, Ho-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • A high resolution Laser Doppler Vibrometer(LDV) developed using electronic fringe counting method. The fringe pattern signal obtained via analog signal processing is divided into two. One was converted to a TTL signal with a ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration. The other was directed to the A/D converter to get a high resolution of about $\lambda/320$ with the phase comparison method. The data obtained with the A/D converter was used in the displacement calculation and the result was displayed on a LCD pane. In this study, a Laser Doppler Vibrometer with measurement range of $0.32\mum~129\mum$ and displacement resolution of 2nm, about $\lambda/320$ , was developed. And this LDV can be used to measure the dynamic of microsize devices such as MEMS(Micro Electro-Mechanical Systems) and to diagnose high capacity electric equipment such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

A study on the number density in a dual beam LDV (Dual Beam LDV 의 數密度 에 관한 硏究)

  • 이기백;주은선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.788-794
    • /
    • 1985
  • A study on the number density in a dual beam LDV is carried out with moving particles of various irregular arrangements. Ratious of the particle diameter to the particle to the fringe Spacing are D/.delta. = 0.3, 0.5, 1.0 and 1.5. In the case of the small number of moving particles(N<10), the visibility is influenced much by the difference of the phase of particles for one side fringe and the change in visibility is shown remarkable. In the case of the larger number of particles, the decreasing rate for visibility on the graph is smooth because the effect of the phase difference of particles is decreased by more unitorm distribution of particles over fringes. And the formula of the number density on the basis of probability is fairly compared with experimental values.

The Effect of Aspect Ratio on the Flow Characteristics of Elliptic Jets (종횡비에 따른 타원제트의 유동특성에 관한 실험적 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1156-1162
    • /
    • 1992
  • The effect of aspect ratio on the flow characteristics of elliptic jets was experimentally investigated. The flow characteristics of sharp-edged elliptic nozzles with aspect ratio of 1 (round nozzle), 2 and 4 were measured by using a 3-D LDV system along the major and minor axis at X/De = 2, 3, 5, 7 and along the centerline up to X/De = 14. At each measurement point mean velocites, turbulent intensities, skewness of three orthogonal velocity components, and Reynolds shear stress were obtained. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4 * 10$^{4}$. Difference in the spreading rate along the major and minor axis was remarkable. The jet half width along the major axis decreased at first and then increased again with going downstream. But the jet width along the minor axis increased steadly. The elliptic jet of AR = 2 had two switching points within the measurement range, while that of AR = 4 had only one. (AAA) : The elliptic jet of AR = 2 showed larger velocity decay rate than that of AR = 1 and AR = 4. The effect of aspect ratio on the flow characteristics of elliptic jets was dominant in the near jet regions of X/De < 7, and the skewness and Reynolds shear stress had quite different distribution depending on the aspect ratio of the elliptic nozzle.

Study on the Effect of Swirl Flow on Spray Characteristics (스월유동이 분무특성에 미치는 영향에 관한 연구)

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • It is well known that the flow and spray characteristics is critical factor on the performance and emission of a direct injection diesel engine. So this study aims to investigate the interaction of flow and spray characteristics. At first, in cylinder flow distributions in swirl adaptor for 4-valve cylinder head of DI Diesel engine were investigated under steady conditions for different SCV angles mounted on the cylinder head with steady rig test and 2-D LDV. And the in-cylinder flow was quantified in terms of mean flow coefficient and swirl ratio/tumble ratio. It was found that the swirl ratio is controlled between 2.3 and 3.8. Then spray characteristics of the intermittent injection were investigated. PDA system was utilized for measurement of a droplet size and velocity. The analyses of the PDA results are carried out with Time Dividing Method. It was found that there is a correlation between the swirl flow and SMD. The droplet size and the velocity were nearly constant value with each SCV angle. And the swirl ratio is higher, SMD smaller. The swirl ratio was helpful factor to the atomization of droplet.

  • PDF

Experimental and Numerical Study of Effective Wake of a Ship

  • Park, J.W.;Kim, J.J.;D.S. Kong;J.M. Lew
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.2
    • /
    • pp.40-47
    • /
    • 2003
  • LDV measurements in large cavitation tunnel around a propeller in operation are carried out to provide valuable information for more accurate wake-adapted propeller design and to study hull-propeller interactions. Effective velocities are computed by both the simplified vortex ring method and by RANS solver with the body force representing the propeller load. The former method uses the nominal velocities measured at the propeller plane as an input data of the numerical method and shows a better agreement with experimental data. The latter shows the qualitative agreement and may be used as an alternative design tools in the preliminary design stage.

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF