• Title/Summary/Keyword: 2D-LC-MS/MS

Search Result 185, Processing Time 0.024 seconds

Analysis of clenbuterol in bovine muscle and milk by LC-ESI/MS/MS (LC-ESI/MS/MS를 이용한 소고기와 우유에서의 클렌부테롤 분석)

  • Hong, Selyung;Jeong, Jiyoon;Park, Hyejin;Lee, Soonho;Lee, Jongok
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • A liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) method was developed for the determination and confirmation of clenbuterol in bovine muscle and milk. Clenbuterol and clenbuterol-D9 using as an internal standard in samples were extracted with ethyl acetate after hydrolysis and evaporated to dryness. The extracts were dissolved in 20% methanol and cleaned using HLB solid-phase extraction cartridge. The analytes were detected by LC-ESI/MS/MS on a $C_{18}$ column. Mass spectral acquisition was done in selected reaction monitoring (SRM) in positive ion mode to provide a high degree of sensitivity. Using MS/MS with SRM mode, the transitions (precursor to product) monitored were m/z 277${\rightarrow}$203 for clenbuterol, and m/z 286${\rightarrow}$204 for internal standard. The limits of quantitation (LOQ) and mean recoveries of clenbuterol in bovine muscle were $0.2{\mu}g/kg$ and 84.3~91.1%, respectively. The LOQ and mean recoveries in milk were $0.05{\mu}g/kg$ and 87.7~98.3%, respectively.

Component Analysis of Suaeda asparagoides Extracts (나문재 추출물의 성분 분석)

  • Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • In the previous study, the anti-oxidant activity of oxtract/fraction of Sueada aspparagoides(SA) and the stability test for the cream containing SA extract were investigated respectively[1,2]. In this study, the components of SA extract were analyzed by TLC, HPLC, and LC/ESI-MS/MS, $^1H$-NMR. TLC chromatogram of ethyl acetate fraction of SA extract revealed 5 bands $(SA1{\sim}SA5)$. HPLC chromatogram of aglycone fractions obtained from deglycoylation reaction of ethyl acetate fraction showed 2 bands (SAA 2 and SAA 1), which were identified as quercetin (composition ratio, 16.88%) and kaempferol (83.12%) in the order of elution time. Among 5 bands of TLC chromatogram, 4 bands $(SA2{\sim}SA5)$ also were Identified as kaempferol-3-O-glucoside (SA 2), quercetin-3-O-glucoside (SA3), kaempferol-3-O-rutinoside (SA 4), quercetin-3-O-rutinoside (SA 5) by LC/ESI-MS/MSMS/MS. respectively. The spectrum generated for SAA 1 by LC/ESI-MS/MS in the negative ion mode also gave the ion corresponding to the deprotonated aglycone $[M-H]^-$ (285m/z), the $^1H$-NMR spectrum contained signals [${\delta}$ 6.19 (1H, d, J=1.8Hz, H-6), ${\delta}$ 6.44 (1H, d, J=1.8Hz, H-8), ${\delta}$ 6.92 (2H, d, J=9.0Hz, H-3', 5'), ${\delta}$ 8.04 (2H, d, J=9.0Hz, H-2', 6', thus SAA 1 was identified as kaempferol. SAA 2 yielded the deprotonated agycone ion $[M-H]^-$ (301m/z), $^1H$-NMR spectrum showed signals [${\delta}$ 6.20 (1H, d, J=2.0Hz, H-6), ${\delta}$ 6.42 (1H, d, J=2.0Hz, H-8), ${\delta}$ 6.90 (1H, d, J=8.6Hz, H-5'), ${\delta}$ 7.55 (1H, dd, J=8.6, 2.2Hz, H-6'), ${\delta}$ 7.69 (1H, d, J=2.2Hz, H-2', thus SAA 2 was Identified as quercetin. In conclusion, with the anti-oxidant activity and the stability test reported previously, component analysis of SA extracts could be applicable to new cosmeceuticals.

Simultaneous determination of seven major human cytochrome P450 activities using LC/MS/MS

  • Lee, Seung-Seok;Kim, Hae-Kyoung;Jin, Joon-Ki;Lee, Hye-Won;Kim, John;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.404.1-404.1
    • /
    • 2002
  • A LC/MS/MS method for the simultaneous determination of the activities of seven major human drug-metabolizing cytochrome P450s (CYP3A4. CYP2D6. CYP2C9. CYP1A2, CYP2C19, CYP2A6. and CYP2C8) was developed. This method used an in vitro cocktail of specific substrates (midazolam. bufuralol. diclofenac, ethoxyresorufin. S-mephenYlOin. coumarin. and paclitaxel) and LC/MS/MS. The assay incubation time is 20 min and the analysis time is 8 min/sample. (omitted)

  • PDF

Identification of Xanthium Sibiricum Components using LC-SPE-NMR-MS Hyphenated System

  • Sohn, Ji Soo;Jung, Youngae;Han, Ji Soo;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • Xanthium sibiricum is used as a traditional folk medicine for the treatment of cancer, fever, headache, nasal sinusitis, and skin pruritus. This study aimed to identify components from Xanthium sibiricum extracts using an SPE-800MHz NMR-MS hyphenated system. The simultaneous acquisition of MS and NMR spectra from the same chromatographic peaks significantly increases the depth of information acquired for the compound and allows the elucidation of structures that would not be possible using MS or NMR data alone. LC -NMR analysis was conducted using a HPLC separation system coupled to 800 MHz spectrometer equipped with a cryoprobe, and a SPE unit was used to automatically trap chromatographic peaks using a HPLC pump. LC-MS analysis was conducted with a Q-TOF MS instrument using ESI ionization in the negative ion mode. Using the hyphenated analysis, several secondary metabolites were identified, such as 3',5'-O-dicaffeoylquinic acid, 1',5'-O-dicaffeoyl- quinic acid, and ethyl caffeate. These results demonstrate that the SPE-800MHz NMR-MS hyphenated system can be used to identify metabolites within natural products that have complex mixtures.

LC-MS/MS Screening Method for Radical Scavenging Active Compounds in Extracts of Ulmus pumila Cortex (유근피 추출물의 radical 소거 활성 성분에 대한 LC-MS/MS 스크리닝 분석법)

  • Im, Do-Youn;Lee, Kyoung-In
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.956-964
    • /
    • 2020
  • The radical scavenging activity measurement system linked with liquid chromatography (LC) is a useful tool for identifying the radical scavenging active compound in a sample composed of numerous compounds such as plant extracts. Using this system, DPPH and ABTS radical scavenging activity were measured on extracts of Ulmus pumila cortex, which is known as an herbal medicine with antioxidant activity. Mass spectrometry (MS) was performed on the identified radical scavenging active compounds to identify the four components estimated to be procyanidin B2, procyanidin B3, catechin-7-O-β-D-apiofuranoside, and catechin-5-O-β-D-apiofuranoside, respectively. In order to compare the relative contents between extract samples, multiple reaction monitoring (MRM) mode analysis conditions were set for the four compounds in order to examine the possibility of comparing the content of radical scavenging active compounds in Ulmus pumila cortex extract using LC-MS/MS. As a result of the relative content comparison, it was found that the higher the ethanol concentration of the extraction solvent, the higher the content of radical scavenging active compounds. As with the results of measuring the radical scavenging activity of each extract, it was confirmed that the content difference of three of the compounds (all except the compound estimated as procyanidin B3) was not significantly observed in the extracts with an ethanol concentration of 50% or more.

Determination of 8-iso-PGF as Oxidative Stress Marker in Human Urine by High Performance Liquid Chromatography with Tandem Mass Spectrometry (LC/MS/MS를 이용한 산화성 스트레스 지표로써 소변 중 8-iso-PGF 분석)

  • Kho, Young-Lim;Lee, Eun-Hee;Chae, Hong-Jae;Choi, Kyung-Ho;Paik, Do-Myung
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.44-51
    • /
    • 2010
  • This study aimed to develop analytical method for 8-isoprostanes as biomarkers for oxidative stress with LC/MS/MS technique and to apply the method for human urine samples. Analyzed compounds for urinary oxidative stress markers were 7 stereo-isomers of prostaglandins and the internal standard (iso-$PGF_{2{\alpha}}-d_4$) was used to adjust the recovery rate. The method for determining urinary iso-$PGF_{2{\alpha}}$ consisted of solid phase extraction and LC/MS/MS detection. Separation of isomers of prostaglandins completed by porous graphitic carbon column and buffer solution. Detection limits for urinary markers of oxidative stress, iso-$PGF_{2{\alpha}}$ with LC/MS/MS were 0.01 ng/ml by S/N ratio 3 and 0.028 ng/ml by calculated as to FDA method. The recovery (92.8~101.9%) and precision (8.8~20.7%) of analysis were feasible for detecting iso-$PGF_{2{\alpha}}$ in real human urine samples. We detected 4 isomers of prostaglandins in human urine samples. Mean (standard deviation) of urinary iso-$PGF_{2{\alpha}}$ concentration were 0.231 (0.117) ng/mg creatinine for smoking group and 0.154 (0.082) ng/mg creatinine for non-smoking group.

Method Development for Determination of Trichothecene Mycotoxins in Nuts by LC-MS/MS (LC-MS/MS를 이용한 견과류 중 트리코테센계 곰팡이 독소 10종 동시분석법 개발)

  • Kim, Dan-Bi;Park, Ji-Su;Yoo, Mi-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • This study presents a method validation for extraction and quantitative analysis of trichothecene mycotoxins in nuts based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach for extraction and enhanced matrix removal (EMR)-lipid-disperive-SPE (d-SPE) cleanup method, with detection and quantification by high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in positive- and negative-ion modes. Linearity, precision, and accuracy were validated for LC-MS/MS methods. Results obtained with LC-MS/MS were linear, with correlation coefficient ($R^2$) of 0.998. Limits of detection and quantification for mycotoxins were $0.41-3.57{\mu}g/kg$ and $1.23-10.82{\mu}g/kg$, respectively. Intra- and inter-day precisions (RSD, %) were 0.40-8.44% and 1.93-12.46%, respectively. Results indicated to be rapidly and accurately identifying trichothecene mycotoxins and may be used as a suitable safety management method for nuts and nuts related commodities.

Simultaneous Determination of 80 Unapproved Compounds using HPLC and LC-MS/MS in Dietary Supplements

  • Kwon, Jeongeun;Shin, Dasom;Kang, Hui-Seung;Suh, Junghyuck;Lee, Gunyoung;Lee, Eunju
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.58-83
    • /
    • 2022
  • We developed analytical methods using high performance chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of 80 unapproved compounds in dietary supplements. The target compounds for analysis were unapproved ingredients (e.g., pharmaceuticals) that have potential adverse effects on consumers owing to accidental misuse, overuse, and interaction with other medication in dietary supplement. Two analytical methods were tested to identify the optimal validation results according to AOAC guideline. As a result, limit of quantification (LOQ) was 0.14-0.5 ㎍ mL-1; linearity (r2) was ≥ 0.99; accuracy (expressed as recovery) was 78.9-114%; precision (relative standard deviation) was ≤ 4.28% in the HPLC method. In the LC-MS/MS method, LOQ was 0.01-2 ng mL-1, linearity (r2) was ≥0.98, accuracy was 71.7-119%; precision was ≤ 12.5%. The developed methods were applied to 51 dietary supplements collected from 2019 to 2021 through MFDS alert system. Based on our previous monitoring study, major compounds were icariin, sibutramine, yohimbine, sildenafil, tadalafil, sennosides (A, B), cascarosides (A, B, C, D), and phenolphthalein. In this study, we re-analyzed samples of detected compounds, and evaluated the statistical difference using Bland-Altman analysis to compare two analytical approaches between HPLC and LC-MS/MS. These results showed a good agreement between two methods that can be used to monitor the unapproved ingredients in dietary supplements. The developed two methods are complementarily suitable for monitoring the adulteration of 80 unapproved compounds in dietary supplements.

Survey and method validation of simultaneous quantitative analysis of T-2 and HT-2 toxins in cereals (곡류 중 T-2 및 HT-2 독소 동시 정량분석의 유효성 검증 및 실태조사)

  • Paek, Ockjin;Kang, Teabeom
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.559-566
    • /
    • 2015
  • The aim of this study was to develop an analytical method for determination of T-2 toxin and HT-2 toxin level in cereals and to survey their levels using LC-MS/MS. The T-2 and HT-2 toxins were simultaneously analyzed by electrospray ionization with a positive ion mode and multiple reaction monitoring (MRM) after filteration and immuno-affinity column clean-up. A matrix-matched standard calibration used for quantification and recoveries of T-2 and HT-3 toxins were in the range of $100.6{\pm}7.2%$ and $96.8{\pm}9.4%$, respectively. Limits of detection and quantification of T-2 and HT-2 toxins were estimated to be 0.5 and $1.5{\mu}g/kg$, respectively. Each repeatability (RSRr) of T-2 and HT-2 toxins was determined to be 0.9~6.0%, and 4.9~6.1%, respectively. Total 115 samples cereals were collected from 9 types of cereals for analysis. The positive percentages of T-2 and HT-2 toxins obtained from collected samples were found to be 72% and 80%, respectively. The contamination level of T-2 toxin and HT-2 toxin in cereals were $37.1{\mu}g/kg$, and $5.4{\mu}g/kg$, respectively. Therefore, this study suggests that the developed method could be an useful analytical method to determine the T-2 and HT-2 toxin level in cereals and the present data could be used as a reference to estimate the risk assessment.

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

  • Sim, Yeong Eun;Ko, Beom Jun;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.163-172
    • /
    • 2019
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample ($200{\mu}L$) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A $5-{\mu}L$ aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a $1/x^2$ as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.