• Title/Summary/Keyword: 2D-Inundation

Search Result 125, Processing Time 0.027 seconds

Combined 1D/2D Inundation Simulation of Riverside Farmland using HEC-RAS (HEC-RAS를 이용한 하천변 농경지의 1, 2차원 연계 침수 모의)

  • Jun, Sang Min;Song, Jung-Hun;Choi, Soon-Kun;Lee, Kyung-Do;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.135-147
    • /
    • 2018
  • The objective of this study was to analyze the characteristics of combined 1D/2D inundation simulation of riverside farmland using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). We compared and analyzed inundation simulation results between 1D and combined 1D/2D hydraulic simulation using HEC-RAS. Calibration and validation of stream stage were performed using three rainfall events. The coefficient of determination ($R^2$) and root mean square error (RMSE) between simulated and observed stream stage were 0.935 - 0.957 and 0.250 m - 0.283 m in calibration and validation, respectively. The inundation area showed no significant difference in 1D and combined 1D/2D simulation ($8.48km^2$ in 1D simulation, $8.75km^2$ in combined 1D/2D simulation). The average inundation depth by 1D simulation was 1.4 m deeper than combined 1D/2D simulation. In the lower inundation depth, the inundation area by combined 1D/2D simulation was larger than inundation area by 1D simulation. As the inundation depth increased, the inundation area by 1D simulation became wider. In the case of the 1D/2D combined simulation, low elevation areas along the river bank were inundated widely. Compared to 1D/2D combined simulation, the flood radius in some sections was longer in 1D simulation. In the 1D analysis, because the low altitude riverside farmlands are also assumed to stream, it is calculated that riverside farmlands have the same stage as the mainstream when the stream is overflowed. Therefore, the inundation area seems to be overestimated in those sections. In other regions, the inundation areas tend to be broken depending on overflow by each stream cross-section. In the case of river flooding, the overflow is expected to flow to the lower area depending on the terrain, such as the results of the combined 1D/2D simulation. It is concluded that the results of combined 1D/2D inundation simulation reflected the topographical characteristics of low-lying farmland.

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Analyzing the Flood Inundation in Low Agricultural Area (저지대 농경지의 홍수범람 분석)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Study on the influence of sewer network simplification on urban inundation modelling results (하수관망의 간소화가 도시침수 모의에 미치는 영향 분석에 관한 연구)

  • Lee, Seung-Soo;Pakdimanivong, Mary;Jung, Kwan-Sue;Kim, Yeonsu
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2018
  • In urban areas, runoff flow is drained through sewer networks as well as surface areas. Therefore, it is very important to consider sewer networks as a component of hydrological drainage processes when conducting urban inundation modelling. However, most researchers who have implemented urban inundation/flood modelling, instinctively simplified the sewer networks without the appropriate criteria. In this research, a 1D-2D fully coupled urban inundation model is applied to estimate the influence of sewer network simplification on urban inundation modelling based on the dendritic network classification. The one-dimensional (1D) sewerage system analysis model, which was introduced by Lee et al. (2017), is used to simulate inlet and overflow phenomena by interacting with surface flow. Two-dimensional (2D) unstructured meshes are also applied to simulate surface flow and are combined with the 1D sewerage analysis model. Sewer network pipes are simplified based on the dendritic network classification method, namely the second and third order, and all cases of pipes are conducted as a control group. Each classified network case, including a control group, is evaluated through their application to the 27 July 2011 extreme rainfall event, which caused severe inundation damages in the Sadang area in Seoul, South Korea. All cases are compared together regarding inundation area, inflow discharge and overflow discharge. Finally, relevant criterion for the simplification method is recommended.

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar III. 2-D Flood Inundation Simulation (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 III. 2차원 홍수범람 모의)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.347-362
    • /
    • 2006
  • In this study, a 2-D flood inundation model was developed to evaluate the impact of levee failure in a natural basin for flood analysis. The model was applied to analyze the inundation flow from the levee break of Gamcheon river during the typhoon Rusa on October 31 through September 1, 2002. To verify the simulated results, wide range field surveys have been performed including the collection of NGIS database, land use condition, flooded area, and flow depths. Velocity distributions and inundation depths were presented to demonstrate the robustness of the model. Model results have good agreements with the observed data in terms of flood level and flooded area. The model is able to compute maximum stage and peak discharge efficiently in channel and protected lowland. Methodology considering radar-rainfall estimation using cokriging scheme, flood-runoff and inundation analysis in this study will contribute to the establishment of the national integrated flood disaster prevention system and the river or protect lowland management system.

Study on Application of Diffusion Wave Inundation Analysis Model Linked with GIS (GIS와 연계한 확산파 침수해석 모형의 적용에 대한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeon;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.88-100
    • /
    • 2009
  • An inundation analysis was performed on Hwapocheon, one of the tributaries of Nakdong River, which was inundated by heavy rain in August, 2002 with overtopping and levee break. The results of the developed model, 2D diffusion wave inundation analysis model, was compared with inundation trace map as well as inundation depth in terms of time and maximum inundated area calculated from FLUMEN model for the assessment of model applicability. The results from the developed model showed high fitness of 88.61% in comparison with observed data. Also maximum inundated area and spatial distribution of inundation zone were also found to be consistent with the results of FLUMEN model. Therefore, inundation zone and maximum inundation area calculated over a period of time by adopting 2D diffusion wave inundation analysis model can be used as a database for identifying high risk areas of inundation and establishing flood damage reduction measures.

  • PDF

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model (1D-2D 통합 도시 침수 해석 모형을 이용한 침수 원인 분석에 관한 연구)

  • Lee, Seungsoo;Noh, Seong Jin;Jang, Cheolhee;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.263-275
    • /
    • 2017
  • Integrated numerical approaches with physically-based conceptualization are required for accurate urban inundation simulation. In this study, we described, applied and analyzed an integrated 1-dimensional (1D) sewerage system and 2-dimensional (2D) surface flow model, which was suggested by Lee et al. (2015). This model was developed based on dual-drainage concept, and uses storm drains as an discharge exchange spot rather than manholes so that interaction phenomena between surface flow and sewer pipe flow are physically reproduced. In addition, the building block concept which prevents inflows from outside structures is applied in order to consider building effects. The capability of the model is demonstrated via reproducing the past flooding event at the Sadang-cheon River catchment, Seoul, South Korea. The results show the plausible causes of the inundation could be analysed in detail by integrated 1D-2D modeling.