• Title/Summary/Keyword: 2D-FFT

Search Result 144, Processing Time 0.024 seconds

A Study on the Blocker Design of Closed Die Forging with Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계에 관한 연구)

  • 한상훈;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.27-33
    • /
    • 2003
  • In closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But, due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study, DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective fer the blocker designs

  • PDF

Blocker Design of Closed Die Forging with Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계)

  • 한상훈;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • In a closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But. due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study. DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective for the blocker designs.

Design and Performance Analysis of A TMS320C67x-based Parallel Signal Processing System (TMS320C67x 기반 병렬신호처리시스템의 설계와 성능분석)

  • Moon, Byung-Pyo;Park, Joon-Seok;Jeon, Chang-Ho;Park, Sung-Joo;Lee, Dong-Ho;Han, Ki-Taek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • This paper deals with a design and performance analysis of a parallel signal processing system based on TMS320C67x. With an emphasis on the board-level design of the processor unit four models are proposed with different memory configurations and internal bus schemes. Several approaches to parallel processing of 2D FFT are also presented to be used for performance analysis. The performance of four board models are estimated and compared in terms of the time spent for local memory access, inter-processor communication, and inter-board communication. The results of performance analysis show that, when performance and implementation complexity are taken into account, the model with both local and shared memories is the most desirable.

  • PDF

Design of FMCW Radar Signal Processor for Human and Objects Classification Based on Respiration Measurement (호흡 기반 사람과 사물 구분 가능한 FMCW 레이다 신호처리 프로세서의 설계)

  • Lee, Yungu;Yun, Hyeongseok;Kim, Suyeon;Heo, Seongwook;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.

Efficient mesh-based realistic computer-generated hologram synthesis with polygon resolution adjustment

  • Yeom, Han-Ju;Cheon, Sanghoon;Choi, Kyunghee;Park, Joongki
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2022
  • We propose an efficient method for synthesizing mesh-based realistic computer-generated hologram (CGH). In a previous nonanalytic mesh-based CGH synthesis, the angular spectrum of the two-dimensional (2D) plane is calculated using the fast Fourier transform (FFT) with the same size as the resolution of the final hologram. Because FFT increases the computation time as the size of the input matrix increases, the previous method has a problem: The higher the resolution of the hologram, the greater the computational load, thereby delaying synthesis time. In this study, when calculating the angular spectrum of the 2D plane in mesh-based CGH synthesis, we propose a method to calculate the angular spectrum by defining the 2D plane with an arbitrary size smaller than the resolution of the final hologram. The resolution adjustment method reduces the computation time and can be applied to occlusion culling and texturing for the realistic effect of mesh-based CGH. We describe the principle, error analysis, application of realistic effect, and experimental results of the proposed method.

A Study on Robust Moving Target Detection for Background Environment (배경환경에 강인한 이동표적 탐지기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.55-63
    • /
    • 2011
  • This paper describes new moving target detection technique combining two algorithms to detect targets and reject clutters in video frame images for surveillance system: One obtains the region of moving target using phase correlation method using $N{\times}M$ sub-block images in frequency domain. The other uses adaptive threshold using learning weight for extracting target candidates in subtracted image. The block region with moving target can be obtained using the characteristics that the highest value of phase correlation depends on the movement of largest image in block. This technique can be used in camera motion environment calculating and compensating camera movement using FFT phase correlation between input video frame images. The experimental results show that the proposed algorithm accurately detects target(s) with a low false alarm rate in variety environment using the receiver operating characteristics (ROC) curve.

Joint Range and Angle Estimation of FMCW MIMO Radar (FMCW MIMO 레이다를 이용한 거리-각도 동시 추정 기법)

  • Kim, Junghoon;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.169-172
    • /
    • 2019
  • Frequency-modulated continuous wave(FMCW) radars with array antennas are widely used because of their light weight and relatively high resolution. A usual approach for the joint range and angle estimation of a target using an array FMCW radar is to create a range-angle matrix with the deramped received signal, and subsequently apply two-dimensional(2D) frequency estimation methods such as 2D fast Fourier transform on the range-angle matrix. However, such frequency estimation approaches cause bias errors since the frequencies in the range-angle matrix are not independent. Therefore, we propose a new maximum likelihood-based algorithm for joint range and angle estimation of targets using array FMCW radar, and demonstrate that the proposed algorithm achieves the Cram?r-Rao bounds, both for range as well as angle estimation.

2D ISAR Imaging using PFA and CDT Algorithms (PFA와 CDT 알고리즘을 이용한 2차원 ISAR 영상 생성)

  • Yoo Ji-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.906-913
    • /
    • 2004
  • FFT algorithm is the most popular ISAR imaging technique from radar data. It requires polar formatting technique to make a focused image of the target as MTRC(Moving Through Resolution Cell) causes a blurred image when the data is from the wide azimuth angle. But there exits the angle limit for the application of the polar formatting and we cannot obtain clear images if the range of the azimuth angle is too wide to process with polar, formatting. This paper analyses the relative merits of the polar formatting algorithm accompanied by interpolation to the CDT algorithm that needs not the interpolation.

CASE STUDIES ON MHD WAVE PROPAGATION BY THE EXOS-D ELECTRIC FIELD MEASUREMENTS (EXOS-D 위성자료를 이용한 자기유체 파동 연구)

  • 황정선;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.286-296
    • /
    • 1997
  • Magnetohydrodynamic wave phenomena have been investigated in the deep plasmasphere by the electric field measurements in the EXOS-D(Akebono) satellite. EXOS-D has highly eccentric orbits(the perigee: 274km, the apogee: 10,500km), which allows relatively long observational time interval near the apogee region compared to other satellites which pass by the same region with less eccentric orbits. Case studies are performed on one month data of October in 1989 where the apogee is located near the equator and the magnetic local time is about 9:00-12:00 a.m. in the dayside plasmasphere. The observational region ranges from L=2 to L=3 and the magnetic latitude is restricted to less than 30 degrees. The power spectrum is examined for each 128 point series of 8-sec averaged data through a FFT, which covers f = 0~62.3 mHz frequency bands. The results are well consistent with field line resonances (FLRs) and cavity modes in the plasmasphere.

  • PDF

Performance Analysis of A Distributed Shared Memory Multiprocessor System Using PASEC (PARSEC을 이용한 분산공유메모리 다중프로세서 시스템의 성능분석)

  • Park, Joon-Seok;Jeon, Chang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3049-3054
    • /
    • 2000
  • In this paper, the effects of the hardware components and runtime environments on the overall performance of a distributed shared memory system are analyzed through simulation. In simulation, the system is modeled using PARSE[1.2] closely to the real runtime environment and the 2D FFT is virtually executed on it. The results of simulation show that the minor hardware components such as bus interfaces and local bus of a processor, which are usuallyignored or neglected when analyzing performance. have significant impacts on the overall system performance. Performance variations caused from runtime environments such as loop overhead and code optimuzatio are also analyzed quantitatively.

  • PDF