• Title/Summary/Keyword: 2D-FDM

Search Result 101, Processing Time 0.032 seconds

Evaluation of Usefulness and Fabrication of Femur Phantom on Quality Control of Bone Mineral Density Using 3D Printing Technology (3D 프린팅기술을 이용한 골밀도 정도관리 대퇴골 팬텀 제작 및 유용성 평가)

  • Da-Yeong, Hong;Jeong, Lee;Jun-Ho, Lee;Jae-Won, Mun;Han-Saem, Oh;Yu-Won, Jeong;Seong-Hyun, Jin;Jong-Min, Hong;In-Ja, Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • As the demand for bone mineral density testing increases in Korea, which is close to an aging society, it is necessary to evaluate the repeatability of equipment such as femur phantom other than l-spine for more accurate diagnosis. However, in clinical practice, it is often not possible to proceed such evaluation due to insufficient quality control conditions. Therefore, this study is to evaluate the usefulness of the femur phantom after fabricating the same using 3D printing technology. The femur phantom was output using GlowFill filament and FDM 3D printing type. Each phantom was repeatedly scaned 20 times to compare whether the existing l-spine phantom and the fabricated femur phantom were suitable as a phantom for quality control. Each time the seven researchers took three times, the location of the femur phantom was readjusted, and then scanned to confirm the error between the researchers. As a result of conducting repeatability evaluation using femur phantom, the coefficient of variation rate was 2%, which was within the minimum precision tolerance of 2.5%. The reproducibility between the researcher was also found to be suitable as the average coefficient of variation was 0.031 and the coefficient of variation rate was 3.1%, which was within the minimum precision error range of 5%. In conclusion, it is considered that the prospective attitude and usefulness of the femur phantom fabricated by 3D printing in clinical practice will be sufficient.

The Numerical Modeling Study for the Simultaneous Flow of Leachate and LFG in Kimpo Landfill (수도권 매립지에서 침출수-가스의 동시 유동 해석을 위한 전산 모델링 연구)

  • 성원모;박용찬;이광희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Open dump of refuse causes groundwater and soil contamination by leachate and air pollution by LFG(Landfill Gas). In this paper, in order to perform a study about reduction of high leachate and LFG collection & control, using a 3-D, 2-phase, transient FDM model, the analysis of simultaneous flow of leachate and LFG has been carried out. In present numerical analysis it is assumed that 58 percents of LFG will evaporate to the ambient air and the recharge rate of a landfill be 12 percent of the average precipitation per year. All other data were excerpted at the point of 1995 when three refuse layers had been buried. From numerical analysis we concluded that maximum head value is approximately 26 mH2O<-에이치투오 (2.52 atm) in the center of the system and that installing venting trench plays an important role in landfill stabilization. Evan with the assumption of three layers constructed and low recharge rate applied, it is found that cumulative leachate and LFG productions will be 15.1 million 세제곱미터, 5.58 billion 세제곱미터, respectively after 40 years.

  • PDF

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Development of 2D Urban Inundation Analysis Model using Adaptive Mesh Refinement Method (메쉬 세분화 기법을 이용한 2차원 침수해석 모형의 개발)

  • Lee, Seung-soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.93-93
    • /
    • 2016
  • 최근 증가하고 있는 기후변화에 의해 설계빈도를 상회하는 강우의 발생빈도가 증가하고 있으며, 이로 인한 도시유역의 내수범람 피해가 증가하고 있다. 도시유역에서 발생하는 침수 피해의 경우 인적 물적 자원이 집중되어 있는 도시의 특성으로 인해 침수로 인한 직접적 피해 규모가 상당할 뿐만 아니라 침수 발생 후 세균 및 박테리아에 의해 발생하는 수인성 전염병의 유행 등과 같은 2차적 피해 또한 심각한 사회적 비용을 초래할 수 있어 도시유역의 침수 피해를 저감시키기 위한 대책이 절실히 요구되어지고 있다. 도시유역의 침수를 예방하기 위한 대책은 구조적 비구조적 대책으로 구분되어 질 수 있으며 구조적 대책의 경우 침수 피해 예방에 직접적인 효과를 낼 수 있다는 장점이 있으나 대규모 사업예산 및 사업 기간으로 인해 직접적 효과를 보기까지 상대적으로 긴 시간이 필요할 뿐만 아니라 사업 진행 중 대상지역 거주민들의 민원으로 인한 갈등 조정 등으로 인해 사업실행에 어려움을 겪고 있다. 이러한 측면에서 비구조적 대책의 일환인 수치해석을 통한 침수피해 재현 및 침수원인 파악을 통한 구조개선 제안은 구조적 대책의 단점을 보완할 수있는 좋은 대안이 될 수 있다. 도시유역의 경우 비도시유역과 대조적인 차이점으로는 높은 비율의 불투수층, 복잡한 지형, 다수의 인공 구조물 및 배수관망 시스템 등을 들 수 있으며, 침수해석 모형의 정확도를 높이기 위해서는 복잡한 지형의 효율적인 처리가 무엇보다 중요하다. 일반적으로 이용되는 2차원 침수해석 모형들은 직교구조 격자 또는 비구조 격자를 이용하여 지형을 묘사하고 있으며 DEM 자료를 직접 사용하는 직교구조 격자의 경우 지형 데이터 생성이 상대적으로 쉽다는 장점이 있으나 복잡한 지형을 표현하기 위해서는 불필요한 지역까지 높은 해상도를 이용해야 하며 이로 인하여 모의시간이 지나치게 길어지는 문제점이 발생한다. 비구조 격자의 경우 상대적으로 복잡한 도시 유역을 잘 묘사할 수 있다는 장점이 있으나 격자망 생성에 필요한 데이터가 많고 격자망 생성에 지나치게 많은 시간과 노력이 소요된다는 단점이 있다. 따라서 본 연구에서는 위에서 언급한 두 가지 방법의 장점만을 취할 수 있도록 메쉬 세분화 기법을 이용한 2차원 침수해석 모형을 개발 하여 복잡한 지형은 고해상도 메쉬를 이용하여 보다 자세히 묘사하고 상대적으로 복잡하지 않은 지형은 저해상도 메쉬를 이용하여 계산시간을 단축시킬 수 있도록 하였다. 수치해석 기법으로는 엇갈림 격자를 이용하는 Leap-Frog 기법과 유한차분 (Finite difference Method)기법을 이용하였다.

  • PDF

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

A Study on Application and Stability Analysis of Spiral Pipe Nailing System (스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the SPN (Spiral Pipe Nailing) system, is developed to self drilling method can apply to ground which is hard to keep shape of bore hole. And limit equilibrium analysis with simplified trial wedge method while length ratio and bond ratio being altered was performed to evaluate slope stability considered of tensile strength and bending stiffness. Also, using $FLAC^{2D}$ program, superiority of the SPN system was compared to the GSN (General Soil Nailing) system about an example section. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. As a result, the SPN system is better than the GSN system in slope stability because of having larger bending stiffness, tensile strength and unit skin friction. And results of simplified trial wedge method are similar to results of TALREN 97 program, commercial limit equilibrium analysis computer software, about an example section. Consequently, it will find out of that the SPN system reduce displacements and settlements in down excavation process as well as to increase the global stability.

  • PDF

Ti:LiNbO3 three-waveguide type traveling-wave optical modulator; outer fed, anti-symmetrical Detuning (Ti:LiNbO3 세 도파로형 진행파 광변조기;바깥입사, 반대칭 Detuning)

  • 이우진;정은주;피중호;김창민
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.375-384
    • /
    • 2004
  • Switching phenomenon of a three-waveguide optical coupler was analyzed by using the coupled mode theory, and the coupling-length of the device was calculated by means of the FDM. CPW traveling-wave electrodes were designed by the CMM and SOR simulation techniques so as to satisfy the conditions of phase-velocity and impedance matching. Traveling-wave modulators were fabricated on a z-cut LiNbO$_3$ substrate. Ti was in-diffused in LiNbO$_3$ to make waveguides and Au electrodes were built on the waveguides by the electroplating technique. Insertion loss and switching voltage of the optical modulator were about 4 ㏈ and 15.6V. Network analyzer was used to obtain S parameters and corresponding RF response. From the measurement, parameters of the traveling-wave electrodes were extracted as such Z$_{c}$=39.2 $\Omega$, Neff=2.48, and a0=0.0665/cm((GHz) (1/2)). The measured optical response R(w) was compared with the theoretically estimated and both responses were shown to agree well. The measurement results revealed that the ㏈ bandwidth turned out to be about 13 GHz.

Seismic analysis and dynamic behavior characterization of rib-reinforced pre-cast tunnels (리브 보강 프리캐스트 터널의 내진 해석 및 동적거동 특성 파악)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.287-301
    • /
    • 2009
  • The novel cut-and-cover tunnel construction method using rib-reinforced pre-cast arch segments has been recently developed and applied for practice to secure a structural stability of high covering and wide width section tunnels. Cut-and-cover tunnels are usually damaged by the seismic behavior of backfill grounds in case of a low covering condition. Seismic analyses are performed in this study to characterize the dynamic behavior of rib-reinforced pre-cast arch cut-and-cover tunnels. Seismic analyzes for 2 lane cast-in-place and rib-reinforced pre-cast arch cut-and-cover tunnels are carried out by using the commercial FDM program (FLAC2D) considering various field conditions such as the covering height embankment slope and excavation slope. It can be concluded that the amplification of seismic wave is reduced due to an increase in the structural stiffness induced by rib-reinforcement. The results show that the rib-reinforced pre-cast arch cut-and-cover tunnels are more effective against the seismic loading, compared to the cast-in-place cut-and-cover tunnels.

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

A Study on the Transport of Soil Contaminant (A Development of FDM Model for 3-D Advection-Diffusion Equation with Decay Term) (토양 오염원의 이동에 관한 연구 (감쇠항이 있는 3차원 이송-확산 방정식의 수치모형 개발))

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.179-189
    • /
    • 2012
  • To simulate the transport of pollutant, a numeric model for the advection-diffusion equation with the decay term is developed. This is finite-difference model using the implicit method (with the weight factor ${\alpha}$) and Gauss-Seidel SOR(successive over-relaxation). This model is compared to the analytical solutions (of simpler dimensional or boundary conditions), and in the condition of Peclet number < 5~20, the result shows stable condition, and Crank-Nicolson method (${\alpha}$=0.5) shows the more accurate results than fully-implicit method (${\alpha}$=1). The mass of advection, diffusion and decay is calculated and the error of mass balance is less than 3%. This model can evaluate the 3-D concentrations of the advection-diffusion and decay problems, but this model uses only the finite-difference method with the fixd grid system, so it can be effectively used in the problems with small Peclet numbers like the pollutant transport in groundwater.