• Title/Summary/Keyword: 2D vision

Search Result 619, Processing Time 0.031 seconds

Computer Vision Platform Design with MEAN Stack Basis (MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yun, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

A 3D Vision Inspection Method using One Camera (1대의 카메라를 이용한 3차원 비전 검사 방법)

  • Jung Cheol-Jin;Huh Kyung Moo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we suggest a 3D vision inspection method which use only one camera. If we have the database of pattern and can recognize the object, and also estimate the rotated shape of the parts, we can inspect the parts using only one image. We used the 3D database and the 2D geometrical pattern matching, and the rotation transition theory about the algorithm. As the results, we could have the capability of the recognition and inspection of the rotated object through the estimation of rotation an81e. We applied our suggested algorithm to the inspection of typical IC and capacitor, and compared our suggested algorithm with the conventional 2D inspection method and the feature space trajectory method.

Study on the 3D Assembly Inspection of Two-Step Variable Valve Lift Modules Using Laser-Vision Technology (레이저 비전을 이용한 2단 가변밸브 리프트 모듈의 3D 조립검사에 대한 연구)

  • Nguyen, Huu-Cuong;Kim, Do-Joong;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.949-957
    • /
    • 2017
  • A laser-vision-based height measurement system is developed and implemented for the inspection of two-step variable valve lift module assemblies. The proposed laser-vision sensor module is designed based on the principle of laser triangulation. This paper summarizes the work on 3D point cloud data collection and height difference measurements. The configuration of the measurement system and the proposed height measurement algorithm are described and analyzed in detail. Additional measurement experiments on the height differences of valves and lash adjusters of a two-step variable valve lift module were implemented repeatedly to evaluate the accuracy and repeatability of the proposed measurement system. Experimental results show that the proposed laser-vision-based height measurement system achieves high accuracy, repeatability, and stabilization for the inspection of two-step variable valve lift module assemblies.

Inspection for Large 2D machining product using robot vision (로봇비젼을 이용한 대형 2차원 가공물의 검사)

  • 정병묵;이성건;조지승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.177-180
    • /
    • 2002
  • Generally, it is very difficult to inspect geometric shape of large 2D objects after machining. To maintain the accuracy for inspection, a robot vision is used to divide overall shape into several enlarged images, and image processing technique is applied to acquire one minute geometric contour. The inspection is to compare the NC data with the measured contour data by the vision system, and the algorithm is to rotate to minimize the maximum deviation coinciding two geometric centers. This paper experimentally shows that the proposed inspection algorithm is very useful fur a large machined object.

  • PDF

Vision Inspection for Large 2D Machining Product using Tolerance Zone (공차영역을 이용한 대형 2차원 가공물의 형상 검사)

  • 이성건;정병묵;조지승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.112-119
    • /
    • 2002
  • Generally, it is very difficult to inspect geometric shape of large 2D objects after machining. To maintain the accuracy for inspection, a robot vision is used to divide overall shape into several enlarged images, and image processing technique is applied to acquire one minute geometric contour. The inspection is to compare the NC data with the measured contour data by the vision system, and the algorithm is to rotate to minimize the maximum deviation after coinciding two geometric centers. This paper experimentally shows that the proposed algorithm is very useful for inspection of large machined objects.

Comparison on Accommodative Response Changes in the Normal Group and Convergence Insufficiency (정상군과 폭주부족군에서 조절반응 변화량의 비교)

  • Kwak, Ho-Weon;Lee, Se-Hee;Kwak, Hyung-Bin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2014
  • Purpose: This study investigated accommodative changes by measuring accommodative response, appearing on the normal and convergence insufficiency Group, by using both eyes open-view auto-refractometer (Nvision-K5001, shin-nippon, Japan). Methods: It carried out objective and subjective refractions, targeting 74 college students (54 males and 20 females) aged between 19 and 29 ($21.59{\pm}2.53$), spherical equivalent OD $-2.28{\pm}2.03$ D, OS $-2.18{\pm}2.01$ D, by measuring accommodative responses at full correction and under correction with plus lens +0.25, +0.50, +0.75 arbitrarily added. Results: In the group of normal and convergence insufficiency, the shorter fixation distances were, the greater accommodative lags showed. The group of convergence insufficiency showed the lesser changes of accommodative response than those of normal. But we found that the convergence insufficiency group had a little larger accommodative amplitude in the total fixation distances. The full correction of convergence insufficiency group and the under correction (+0.50 D) of normal were alike in the accommodative responses. We have also investigated that the correlation between accommodative responses and fixation distances was decreased steeply at the excessive low vision correction. Conclusions: Under correction (+0.50 D) in a near distance is expected to avoid unnecessary accommodative responses, make eyes relaxed and comfortable.

Motion detection using stereo vision (스테레오 비젼을 이용한 움직임 검출)

  • 권창일;원성혁;김민기;이기식;김광택;정일준
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.206-209
    • /
    • 2000
  • Almost vision application systems use 2-D information by taking only one camera. Recently it arises to utilize 3-D information, which is distance from camera to object, because 2-D information is not sufficient. Therefore, we take stereo camera system. In motion detection algorithm using stereo vision, it operates like one camera system, which takes advantage of correlation, edge, and difference algorithm, when it detects any motion. At that time, to detect motion, it compares two images, which is from two cameras, to calculate disparity that contains distance information. By disparity, it can compute real distance and size of object information. We describe a motion detection algorithm which computes 3-D distance and object size in real time.

  • PDF

Correction of Photometric Distortion of a Micro Camera-Projector System for Structured Light 3D Scanning

  • Park, Go-Gwang;Park, Soon-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • This paper addresses photometric distortion problems of a compact 3D scanning sensor which is composed of a micro-size and inexpensive camera-projector system. Recently, many micro-size cameras and projectors are available. However, erroneous 3D scanning results may arise due to the poor and nonlinear photometric properties of the sensors. This paper solves two inherent photometric distortions of the sensors. First, the response functions of both the camera and projector are derived from the least squares solutions of passive and active calibration, respectively. Second, vignetting correction of the vision camera is done by using a conventional method, however the projector vignetting is corrected by using the planar homography between the image planes of the projector and camera, respectively. Experimental results show that the proposed technique enhances the linear properties of the phase patterns that are generated by the sensor.

Optimal 3D Grasp Planning for unknown objects (임의 물체에 대한 최적 3차원 Grasp Planning)

  • 이현기;최상균;이상릉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.