• Title/Summary/Keyword: 2D to 3D 변환기술

Search Result 169, Processing Time 0.027 seconds

Implementation of High-Speed Fresnelet Transform using Daubechies's Filter (드뷔시 필터를 이용한 고속 프레넬릿 변환의 구현)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.820-828
    • /
    • 2017
  • Service of digital hologram that has been recognized as a visual system for next generation requires various signal processing technologies. A transform is the most frequently used tool among signal processing techniques for 2-dimensional(D) and 3-D natural picture. A digital hologram has totally different property with a natural picture, so it is rarely efficient to apply transform tools used in 2-D image processing to a digital hologram. To overcome this a Fresnelet transform for a digital hologram has been proposed. We derive a Fresnelet transform by using the Daubechie's filter after applying an unitary Fresnel transform to a wavelet basis function. We also implement the transform as types of device and kernel code to improve operational performance. In consideration of the average time that is required for a pixel we can have observed the performance is improved up to 242 and 30 times for using the (9,7) and (5,3) filters in case of using device code.

Target Strength of Schlegel′s Black Rockfish (Sebastes schlegeli)and Red Seabream (Pagrus major) (조피볼락과 참돔의 표적 강도에 관한 연구)

  • 손창환;황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2002
  • This study investigates dorsal aspect target strength with fish size, tilt angle and frequency characteristics for the schlegel's black rockfish(Sebastes achlegeli) and the red seabream (Pagrus major). This study was carried out on free swimming fish in a cage in order to obtain acoustic data of the biomass estimation using the scientific echo sounder. The results obtained from this study are summarized as follows; 1 The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with fish length were expressed -63.7dB and -62.6dB at a frequency of 38kHz, -64.4dB and -65.4dB at 120kHz, and -62.4dB and -65.0dB at 200kHz, respectively. 2. The coefficients of the schlegel\`s black rockfish and the red seabream using averaged TS with fish length were expressed -68.4dB and -67.9dB at a frequency of 38kHz, -73.4dB and -72.7dB at 120kHz, and -70.BdE and -73.4dB at 2001Hs, respectively. 3. The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with body weight were expressed -52.0dB and -50.9dB at a frequency of 38kHz, -52.7dB and -53.7dB at 120kHz, and -50.7dB and -53.3dB at 200kHz, respectively. 4. The coefficients of the schlegel's black rockfish and the red seabream using averaged TS with body weight were expressed -56.7dB and -56.2dB at a frequency of 38kHz, -61.7dB and -61.0dB at 120kHz, and -59.ldE and -61.6dB at 200kHz, respectively. 5. Varying the tiIt angle of the two red seabream from -26$^{\circ}$to +25$^{\circ}$, the variation width of target strength expressed smaller at a frequency of 38kHz than at 120kHz and expressed about 3~6dB higher head up than head down at 120kHz.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Dual Resonance Design of a Ultrasonic Transducer Using a Single Acoustic Matching Layer - (어종식별을 위한 광대역 초음파 변환기의 설계 II - 단일음향정합층을 이용한 이중공진형 변환기의 설계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 1998
  • A doubly resonant ultrasonic transducer has been designed as an attempt to increase the bandwidth of underwater transducers. The dual resonance conditions were accomplished by attaching a single acoustic matching layer on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and a prestress bolt. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedances and thicknesses of the head, tail and matching layers in the water tank. Two distinct resonance peaks in the transmitting voltage response(TVR) of a developed transducer were observed at 34.3 and 40.4 kHz, respectively, with the difference frequency of 6.1kHz and the center frequency of 37.2kHz. The values of TVR at these frequencies were 136.5 dB re $1\;\muPa/V$ at 34.3 kHz and 136.8 dB re $1\;\muPa/V$ at 40.4 kHz, respectively. Reasonable agreement between the experimental results and the numerical results was achieved. From this result, it is expected that the generation of the distinct resonances at any two desired frequencies can be achieved through the proper choice of the matching layer to provide the impedance transformation between the transducer and the medium.

  • PDF

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology (70 nm MHEMT와 DAML 기술을 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim Sung-Chan;An Dan;Lim Byeong-Ok;Beak Tae-Jong;Shin Dong-Hoon;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

Development of a Three Dimensional Control System for Implementing Rapid Prototyping Technology (쾌속조형기술의 구현을 위한 3차원 제어시스템 개발)

  • Cho, Sung-Mok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.775-780
    • /
    • 2007
  • Rapid Prototyping (RP) is a technology that produces prototype parts from 3D computer aided design model data without intermediate processing technology rapidly. CAD model data are created from 3D object digitizing systems but presented just as 2D data when they are printed as a hard copy or displayed on a monitor. However, Rapid Prototyping Technology fabricates 3D objects the same that CAD data because it transforms designed 3D CAD data into 2D cross sectional data, and manufactures layer by layer deposition sequentially. But most of all the small and medium scale companies which produce a toothbrush, a toy and such like provisions are in difficult situations to buy RP system because it is very expensive. In this paper, we propose a 3D control system adopting open source programs for implementing Rapid Prototyping Technology in order that RP system can be purchase at a moderate price.

  • PDF

Application of Parametric Acoustic Source to Fish Finding (Parametric 음원의 어탐이용에 관한 고찰)

  • Lee, Un-Hui;Jang, Ji-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.189-197
    • /
    • 1987
  • As the basic research for the application of a parametric acoustic source to fish finding, the characteristics of beam patterns and parametric gains of the acoustic source were investigated and target strengths of fish, grey mullet, with the acoustic source were measured. The mean primary frequency of the acoustic source was 200KHz and the produced sounds by difference-frequencies were 5KHz, 10KHz, 16KHz and 20KHz. For measurement of target strength in yaw (coronal) plane of fish the to be target was 34cm in length, the pulse duration of the source was 0.3m/sec and the difference frequency was 10KHz in consideration of the length of fish and of parametric gain of the acoustic source. The results obtained are as follow: 1. Beam widths(down 3 dB) of the parametric acoustic source excited at frequencies of 5KHz, 10KHz, 16KHz, and 20KHz were 4.3$^{\circ}$, 2.2$^{\circ}$, 3.0$^{\circ}$ and 2.5$^{\circ}$ respectively. 2. Parametric gains of the parametric acoustic source excited at frequencies of 5KHz, 10KHz, 16KHz and 20KHz were -41 dB, -45 dB, -60 dB and -68 dB respectively. 3. Target strengths of a fish in head and tail aspect using the parametric acoustic source were 5 dB lower than those using 200KHz single frequency sound, but those in side aspect were similar. 4. Target strengths of two or three fish with the parametric acoustic source were 1-3 dB lower than those in head and tail aspect using 200KHz single frequency sound.

  • PDF

Growth of 3D TiO2 Nano-wall-like Structure with High Effective Surface Area (높은 유효 표면적을 갖는 3차원 TiO2 나노벽 유사구조의 성장)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • Nano-materials with high effective surface areas have been applied to functional materials, such as high sensitive gas sensors and biosensors and high-efficiency catalytic materials. In this study, titanate sheets with a 3D nano-wall-like structure, high effective surface area, were synthesized vertically to the substrate by a chemical bath deposition (CBD) process using a Ti sheet and urea. The synthesis temperature and synthesis duration time were controlled to the optimal conditions of a 3D nano-wall-like structure in the CBD process. The synthesized ammonium titanate sheets with a 3D nano-wall-like structure were annealed in air to transform to TiO2 with a 3D nano-wall-like structure for various applications. As a result, the optimal temperature in the CBD process for the synthesis of a uniform ammonium titanate sheet with a 3D nano-wall-like structure was 90 ℃. TiO2 with a 3D nano-wall-like structure was obtained from the ammonium titanate sheet with a 3D nano-wall-like structure by annealing above 550 ℃ for three hours. In particular, TiO2 with a 3D nano-wall-like structure with a dominant rutile phase was obtained by post-annealing at 700 ℃. On the other hand, damage to the 3D nano-wall edge was observed after 700 ℃ post-annealing.

Point Cloud Video Codec using 3D DCT based Motion Estimation and Motion Compensation (3D DCT를 활용한 포인트 클라우드의 움직임 예측 및 보상 기법)

  • Lee, Minseok;Kim, Boyeun;Yoon, Sangeun;Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.680-691
    • /
    • 2021
  • Due to the recent developments of attaining 3D contents by using devices such as 3D scanners, the diversity of the contents being used in AR(Augmented Reality)/VR(Virutal Reality) fields is significantly increasing. There are several ways to represent 3D data, and using point clouds is one of them. A point cloud is a cluster of points, having the advantage of being able to attain actual 3D data with high precision. However, in order to express 3D contents, much more data is required compared to that of 2D images. The size of data needed to represent dynamic 3D point cloud objects that consists of multiple frames is especially big, and that is why an efficient compression technology for this kind of data must be developed. In this paper, a motion estimation and compensation method for dynamic point cloud objects using 3D DCT is proposed. This will lead to switching the 3D video frames into I frames and P frames, which ensures higher compression ratio. Then, we confirm the compression efficiency of the proposed technology by comparing it with the anchor technology, an Intra-frame based compression method, and 2D-DCT based V-PCC.

Digital Watermarking for Three-Dimensional Polygonal Mesh Models in the DCT Framework (DCT영역에서 3차원 다각형 메쉬 모델의 디지헐 워터마킹 방법)

  • Jeon, Jeong-Hee;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.156-163
    • /
    • 2003
  • Most watermarking techniques insert watermarks into transform coefficients in the frequency domain because we can consider robust or imperceptible frequency bands against malicious attacks to remove them. However, parameterization of 3-D data is not easy because of irregular attribution of connectivity information, while 1-I) or 2-D data is regular. In this paper we propose a new watermarking scheme for 3-D polygonal mesh models in the DCT domain. After we generate triangle strips by traversing the 3-D model and transform its vertex coordinates into the DCT domain, watermark signals are inserted into mid-frequency bands of AC coefficients for robustness and imperceptibility. We demonstrate that our scheme is robust against additive random noise, the affine transformation, and geometry compression by the MPEG-4 SNHC standard.

An Efficient Algorithm for Rebar Element Generation Using 3D CAD Data (3D CAD 데이터 기반의 효율적 철근 요소 생성 알고리즘)

  • Cho, Kyung-Jin;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2009
  • In this paper a two-step algorithm is proposed to efficiently generate rebar elements from 3D CAD data in the context of CAD/CAE data transfer. The first step is an algorithm to identify various type rebar objects and their attributes by analyzing 3D CAD data in STEP format, which is one of the international data standards. The second algorithmic step is a procedure to generate one-dimensional rebar elements from the object data made through the first step for finite element analysis or other CAE tasks. Successful rebar element data generation from real 3D CAD data for a reinforced concrete structure shows the efficacy of the proposed algorithm.