• Title/Summary/Keyword: 2D solid

Search Result 1,365, Processing Time 0.028 seconds

Improved Micropropagation of Root Chicory, Cichorium intybus L. var. sativus.

  • Lim, Jung-Dae;Yang, Deok-Chun;Lee, Hyeon-Yong;Kim, Jong-Dai;Lee, Jin-Ha;Sung, Eun-Soo;Yu, Chang-Yeon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • The establishment of an efficient protocol for plant regeneration and micropropagation from leaf explant cultures of Chicory, Cichorium intybus L. var. sativus. is reported. Callus formation rate appeared 100% from explant in all growth regulators, but calli formed in the prensence of naphthaleneacetic acid (NAA) were appeared very compact and non-embryogenic state. The regenerated shoots were obtained from leaf explant cultures on solid MS medium containing different concentrations of cytokinins and auxin. The highest number of shoots (5.7) per explant and shoot growth (2.8cm) was obtained on MS medium containing 0.1 mg BAP L$^{-1}$ and 0.1 mg NAA L$^{-1}$ . Indole acetic acid was the most suitable auxin for root formation among three auxins tested. 2,4-D had no effect on shoot and root formation.

  • PDF

Silicatein: Biosilicification and Its Applications (실리카테인: 생규화 및 응용)

  • Yang, Byeongseon;Yun, Jin Young;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • Silicon has become of increasing importance as the basic element of many high-technology products. Its synthesis is very difficult requiring high temperature solid-state reactions (> $1000^{\circ}C$) or lower temperature methods ($100-200^{\circ}C$) involving hydrothermal and solvothermal reactions under extreme pH conditions. In nature, on the other hand, a wide range of living organisms have collectively evolved the means of biosilicification at the astounding rate of gigatons/year. This is impressive because biosilicification in these organisms occurs under mild physiological conditions. Marine sponges possess the ability to sequester soluble silicon sources from their environments and assemble them into intricate 3D architecture. The advent of molecular biology has recently made it possible to glean molecular information about biosilicification from these systems and it turned out that enzyme silicatein is the core of biosilicification. In this review, biosilicification regulated by silicatein and its mechanism are described. Also, production of silicatein through recombinant technology and several applications of recombinant silicatein are described including immobilization of silicatein, formation of Au or Ag nanoparticles on nanowires, nanolithography approaches, core-shell materials, encapsulation, bone replacement materials, and microstructured optical fibers.

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

Atomic structure and crystallography of joints in SnO2 nanowire networks

  • Hrkac, Viktor;Wolff, Niklas;Duppel, Viola;Paulowicz, Ingo;Adelung, Rainer;Mishra, Yogendra Kumar;Kienle, Lorenz
    • Applied Microscopy
    • /
    • v.49
    • /
    • pp.1.1-1.10
    • /
    • 2019
  • Joints of three-dimensional (3D) rutile-type (r) tin dioxide ($SnO_2$) nanowire networks, produced by the flame transport synthesis (FTS), are formed by coherent twin boundaries at $(101)^r$ serving for the interpenetration of the nanowires. Transmission electron microscopy (TEM) methods, i.e. high resolution and (precession) electron diffraction (PED), were utilized to collect information of the atomic interface structure along the edge-on zone axes $[010]^r$, $[111]^r$ and superposition directions $[001]^r$, $[101]^r$. A model of the twin boundary is generated by a supercell approach, serving as base for simulations of all given real and reciprocal space data as for the elaboration of three-dimensional, i.e. relrod and higher order Laue zones (HOLZ), contributions to the intensity distribution of PED patterns. Confirmed by the comparison of simulated and experimental findings, details of the structural distortion at the twin boundary can be demonstrated.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형 쐐기(Physical wedge)와 동적 쐐기(Dynamic wedge)의 조사야 주변 선량에 관한 연구)

  • Ko, Shin-Gwan;Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 2008
  • Measurements of the peripheral dose were performed using a 2D array ion chamber and solid water phantom for a $10{\times}10cm$, source-surface distance (SSD) 90cm, 6 and 15MV photon beam at depths of 0.5cm, 5cm through $d_{max}$. Measurements of peripheral dose at 0.5cm and 5cm depths were performed from 1cm to 5cm outside of fields for the dynamic wedge and physical wedge $15^{\circ}$, $45^{\circ}$. For 6MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1% than that of physical wedge For 15MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6% that of physical wedge. The results showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge. The wedge systems produce different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal (CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석)

  • Lim, Jong Hun;Bae, Keon;Shin, Jea Ho;Lee, Dong Ho;Han, Joo Hee;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.678-686
    • /
    • 2016
  • The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.

Attractiveness of Host Plant Volatiles and Sex Pheromone to the Blueberry Gall Midge (Dasineura oxycoccana) (블루베리혹파리에 대한 기주식물 휘발성 물질과 성페로몬의 유인 효과)

  • Yang, Chang Yeol;Seo, Mi Hye;Yoon, Jung Beom;Shin, Yong Seub;Choi, Byeong Ryeol
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.393-398
    • /
    • 2020
  • The blueberry gall midge, Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae), is an emerging pest on cultivated blueberries in Korea. To develop a sensitive tool for monitoring this pest in blueberry orchards, we compared the attractiveness of host plant volatiles and sex pheromone to D. oxycoccana adults. We performed gas chromatography-mass spectrometry (GC-MS) analysis of solid-phase microextraction (SPME)-collected volatiles that were released from blueberry ('Darrow' cultivar). The analysis revealed two major volatiles, cinnamaldehyde and cinnamyl alcohol from flowers; and three major volatiles, β-caryophyllene, germacrene D, and α-farnesene from shoots and young fruits. In field tests conducted in Gunsan, Korea in 2019, commercialized cinnamaldehyde, cinnamyl alcohol, β-caryophyllene, and α-farnesene, used singly or in quaternary combination, were unattractive to the blueberry gall midge. However, traps baited with the known sex pheromone (2R,14R)-2,14-diacetoxyheptadecane attracted significantly more males than the treatments with plant volatiles or the control. No synergistic effect was observed between sex pheromone and plant volatiles. Male D. oxycoccana were captured in the pheromone traps from May to August, with three peaks in mid-May, late June, and late July in Gunsan blueberry fields in 2020.

Physiological Activity of the Fermented Small Black Soybean (Rhynchosia volubilis) with a Solid State Culture of the Bearded Tooth Mushroom (Hericium erinaceum) Mycelia (쥐눈이콩-노루궁뎅이버섯 균사체 발효물의 생리활성)

  • Kim, Hoon;Shin, Ji-Young;Lee, Ah-Rum;Hwang, Jong-Hyun;Yu, Kwang-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1348-1358
    • /
    • 2017
  • To enhance the physiological activity of the Rhynchosia volubilis (RV), R. volubilis (RVHE-A) and R. volubilis-added herbal powder (RVHE-B) were fermented with a solid state culture of Hericium erinaceum mycelia (HE). The total isoflavone contents of the non-fermented RV-A ($489.9{\mu}g/g$) and RV-B ($571.1{\mu}g/g$) were remarkably increased in fermented RVHE-A ($1,836.4{\mu}g/g$) and RVHE-B ($1,276.7{\mu}g/g$). In particular, aglycone isoflavones such as daidzein and genistein were significantly higher in the RVHE-A than any other sample. When hot-water (HW) and EtOH extracts (E) were fractionated from the RV and RVHE, both extracts from the RVHE-A were higher than those from the RV-A in total polyphenol and flavonoid contents. However, the RVHE-B-HW showed a lower polyphenol and flavonoid content level than did RV-B-HW. RVHE-A-HW and -E also had more potent ABTS radical scavenging activity than any extract from the non-fermented RV and other ferments (RVHE-B). In the meanwhile, RVHE-A-HW potently stimulated the production of macrophage activation-related cytokines such as $TNF-{\alpha}$, IL-6 and IL-12 ($841.7{\pm}71.3pg/mL$, $3.9{\pm}0.1ng/mL$, $179.3{\pm}30.2pg/mL$) from peritoneal macrophage more than RV-A-HW ($92.5{\pm}1.5pg/mL$, $0.1{\pm}0.0ng/mL$, $37.4{\pm}5.4pg/mL$) as well as RVHE-B-HW ($557.0{\pm}21.3pg/mL$, $1.8{\pm}0.0ng/mL$, $90.0{\pm}10.0pg/mL$). However, all the EtOH extracts did not show significant activity. In addition, the RVHE-A-HW showed a significantly higher intestinal immune system modulating activity through Peyer's patch and GM-CSF production than did any other extract from RV and RVHE-B. In conclusion, these results suggest that the fermented R. volubilis with H. erinaceum mycelia possesses a possible use as an industrial application as functional food or material.