• Title/Summary/Keyword: 2D solid

Search Result 1,365, Processing Time 0.029 seconds

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

Quantitative Investigation of Grain Growth in Carbide Added(Mo$_2$C, ZrC and WC) to TiC-Ni Matrix Cermets

  • Kim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The growth of solid particles in TiC-XC-2vo1.% and TiC-XC-30vo1.% Ni alloys, (where X=Zr, W or Mo) was fitted to the equation of the form $d^3$-${do}^3$=Kt during the liquid phase sintering at 1,673K. Also, the grain growth behavior decreased markedly with the addition of ${MO}_2$C or WC and increased with the addition of zrC. The contiguity was greater in the alloys with a smaller growth rate constant and especially, decreased by increasing the Ni content in the TiC-${MO}_2$C-Ni alloy. In addition, the effect of the addition of carbide on the grain growth of 2 vo1.% Ni alloys was found to be similar to that of 30vo1.% Ni alloys. Consequently, the grain growth mechanism cannot be explained by the usual solution / reprecipitation process, but can be explained in terms of a new growth velocity equation, which includes the effects of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid / liquid interface in the alloy.

Integration of Headspace Solid Phase Micro-Extraction with Gas Chromatography for Quantitative Analysis of Formaldehyde

  • Lo, Kong Mun;Yung, Yen Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.139-142
    • /
    • 2013
  • A study was carried out to evaluate the solid phase micro-extraction (SPME) for formaldehyde emission analysis of uncoated plywood. In SPME, formaldehyde was on-fiber derivatized through headspace extraction and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The SPME was compared with desiccators (DC-JAS 233), small-scale chamber (SSC-ASTM D6007) and liquid-liquid extraction (LLE-EPA 556) methods which were performed in accordance with their respective standards. Compared to SSC (RSD 4.3%) and LLE (RSD 5.0%), the SPME method showed better repeatability (RSD 1.8%) and not much difference from DC (RSD 1.4%). The SPME has proven to be highly precise (at 95% confidence level) with better recovery (REC 102%). Validation of the SPME method for formaldehyde quantitative analysis was evidenced. In addition, the SPME by air sampling directly from plywood specimens (SPME-W) correlated best with DC ($r^2$ = 0.983), followed by LLE ($r^2$ = 0.950) and SSC ($r^2$ = 0.935).

Solid-state NMR Studies of Phenethyl Sulfonic Acid-functionalized MCM-41

  • Chul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.74-81
    • /
    • 2024
  • A sulfonic acid-water-silanol system in SO3H-functionalized MCM-41 was investigated using solid-state nuclear magnetic resonance techniques. The proton exchange rate between a water molecule and a silanol group in the S-PE-MCM-41 was determined by analyzing the 1D proton spectra, the proton EXSY spectrum, and 2H spin-lattice relaxation data under various hydration levels. Two kinds of water-bounding sites were found in the S-PE-MCM-41: weakly and strongly bound sites. Over several hours, water molecules bound to the weakly bound sites at the low hydration level migrated to the strongly bound sites. At high temperature, the S-PE-MCM-41 easily lost water molecules weakly bound to the silanol, while the strongly bound water molecules survived. Water molecules that participated in the hydration of the phenethyl sulfonate were involved in the hydrogenbonded silanol mechanism of proton conductivity. This phenomenon contributes higher proton conductivity to the S-PE-MCM-41 by the cooperation of sulfonyl and silanol groups in the proton transfer process, even at higher temperature.

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Design of Residual Treatment Process with Filter Backwash Recycle System (역세척수 회수시스템이 포함된 배출수처리공정의 설계)

  • Bae, Byung-Uk;Choi, Kyung-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this study, both sedimentation and thickening experiments were conducted for residuals produced from an advanced water treatment plant for more accurate and practical design of residual treatment train. In order to design a backwashed residual sedimentation basin (SRSB) in the filter backwash water recycle system, two kinds of backwash waters, one from sand filter (SFBW) and the other from GAC adsorption bed (GACBW), were separately collected and their surface loading rate measured. In addition, in order to design a gravity thickener, batch thickening tests were conducted for concentrated residuals taken from sedimentation basin and their limiting solid flux ($SF_{L}$) measured. From the experimental results and consideration of the seasonal characteristics of the residual, surface loading rate of $70m^{3}/m^{2}{\cdot}d$ was proposed as a design parameter for SRSB and solid loading rate of 20 kg $TS/m^{2}{\cdot}d$ was proposed as a design parameter for gravity thickeners. Finally, the material mass-balance was made for the design of each unit process in the residual treatment train.

Shock-wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of $TiB_2$-Cu Nanocomposites

  • Lomovsky, O.I.;Mali, V.I.;Dudina, D.V.;Korchagin, M.A.;Kwon, D.H.;Kim, J.S.;Kwon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1084-1085
    • /
    • 2006
  • We studied formation of nanostructured $TiB_2$-Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.

  • PDF

Study on the Burning Rate Enhancement of HTPB/AP/Zr Solid Propellants for Nozzleless Boosters (무노즐 부스터 적용을 위한 HTPB/AP/Zr계 고체 추진제의 연소속도 증진 연구)

  • Lee, Sunyoung;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The study for the combustion characteristics of propellants for nozzleless boosters was carried out. The metal fuels of Al and Zr were introduced into solid propellant formulations in order to enhance the density-specific impulse and the high burning rate with low pressure exponent was investigated as the major combustion characteristic of propellant to design nozzleless boosters. The burning rate of Zr-containing propellant was higher than Al-containing propellant and, $13{\mu}m$ Zr-containing propellant exhibited the burning rate of 35 mm/s (at 1000 psi)and pressure exponent of 0.3282. The benefit of using Al and Zr-containing propellant into nozzleless boosters was demonstrated in these results.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Effect of Al Solution Strengthening on Damping Capacities of Mg-Al Alloy Solid Solutions (Al 고용 강화가 Mg-Al 합금 고용체의 진동감쇠능에 미치는 영향)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.221-227
    • /
    • 2024
  • The damping capacities in the strain-amplitude dependent and strain-amplitude independent regions were comparatively investigated for pure Mg and Mg-X%Al solid solutions (X : 1, 2 at%) to clarify the role of Al solute in the damping properties of Mg-Al binary solid solution. In order to rule out the effect of grain size on damping capacity, grain sizes of the samples were adjusted to an almost similar level by changing the heat-treatment or solution treatment times at 683 K (12 h, 24 h and 32 h for pure Mg, Mg-1%Al and Mg-2%Al alloys, respectively). The damping capacities of the heat-treated pure Mg and Mg-X%Al solid solutions exhibited a decreasing tendency with an increase in Al concentration both in the strain-amplitude dependent and strain-amplitude independent regions. The observed damping trends depending on strain-amplitude were analyzed and discussed in association with decreasing length between weak pinning points (Al solutes) in Granato-Lücke model.