• Title/Summary/Keyword: 2D scan data

Search Result 261, Processing Time 0.032 seconds

Development of LiDAR and SBES data Merging Program for Calculation of Water Volume (수량계산을 위한 LiDAR와 SBES데이터 통합프로그램 개발에 관한 연구)

  • Oh Yoon-Seuk;Bae Sang-Keun;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.157-166
    • /
    • 2005
  • LiDAR(Light Detection And Ranging) can make terrain model where above the ground and the mixed data between SBES(Single Beam Echo Sounder) and SSS(Side Scan Sonar) can make terrain model where bottom of water. So this research suggest that how to merge data which are got ken different devices and we developed the software which can display 2D/3D graphic and water volume calculation. And we compared accuracy between the commercial software'Surfer'and LiDAR and SBES data Merging Program.

  • PDF

alibration of Infra-red Range Finder PBS-03JN Using Piecewise Linear Function Based on 2-D Grid Error (2차원 격자 오차 데이터 기반의 선형 보정 함수들을 이용한 적외선 레인지 파인더 PBS-03JN의 보정)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.922-931
    • /
    • 2011
  • An efficient calibration algorithm for mobile robot localization using infrared range finder is proposed. A calibration is important to guarantee the performance of other algorithms which use sensor data because it is pre-process. We experimentally found that the infrared range finder PBS-03JN has error characteristics depending on both distance and scan angle. After obtaining 2-D grid error characteristic data on distance and scan angle, we proposed a simple and efficient calibration algorithm with a 2-D piecewise linear function set. The performance of our proposed calibration algorithm is verified by experiments and simulation.

3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

  • Seno, Takashi;Ohtake, Yutaka;Kikuchi, Yuji;Saito, Noriaki;Suzuki, Hiromasa;Nagai, Yukie
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD) data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

3D City Modeling Using Laser Scan Data

  • Kim, Dong-Suk;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.505-507
    • /
    • 2003
  • This paper describes techniques for the automated creation of geometric 3D models of the urban area us ing two 2D laser scanners and aerial images. One of the laser scanners scans an environment horizontally and the other scans vertically. Horizontal scanner is used for position estimation and vertical scanner is used for building 3D model. Aerial image is used for registration with scan data. Those models can be used for virtual reality, tele-presence, digital cinematography, and urban planning applications. Results are shown with 3D point cloud in urban area.

  • PDF

Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring (직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석)

  • Istook, Cynthia L.;Lim, Ho-Sun;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.6
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.

Subjective Wearing Assessment and Clothing Pressure depending on the Pattern Reduction Rate of Developed Cycle Pants Using the 3D Human Scan Data (3D 스캔 데이터를 이용하여 개발된 사이클 팬츠 패턴의 축소율에 따른 의복압 및 주관적 착의 평가)

  • Jeong, Yeonhee;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this study, we have developed the ergonomic pattern from the 3D human body reflecting cycling posture and extensibility of the stretch fabrics. Adjusting pressure level in the construction of athlete's tight-fitting stretch garments by reducing the original pattern is a challenging subject, which influence on the performance of the wearer directly. Therefore, in this study, relationships between the reduction rates of the 2D pattern obtained from the 3D human scan and resultant clothing pressure were explored to improve the fit and pressure exerted by reduced clothing pattern. Subjective wear sensations of the experimental garments were rated using a seven-point Likert scale on two consecutive days. While wearing the garments, subjects were asked to take five different postures including waist flexion, sitting and others. A Likert-type scale was used for the evaluation, with 7 points indicating the best fit in tight-fitting pants. Comparing 2/3T-pattern with T-pattern, the latter was superior to 2/3T-pattern in terms of adhere well to the waist and hip area in the 0.032 significance level. T-pattern was superior to 2/3T-pattern in terms of fitting and wear comfort. As results, the pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the skin while cycling posture, so that the extra ease for movement and good fit was not need to be considered. The optimized reduction rates were determined with the proposed reduction rate, the resultant pressure range was within the range of $0.5{\sim}3.0gf/cm^2$ at eight locations on the body except front waist band and thigh band.

Torso Pattern Design for Korean Middle-Aged Women using 3D Human Body Scan Data (차원 인체 스캔 데이터를 활용한 한국 중년여성 토르소 원형 설계)

  • Kim, Hye-Jin;Park, Soon-Jee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.4
    • /
    • pp.600-613
    • /
    • 2011
  • The purpose of this study is to provide Torso pattern for Korean middle-aged women using 3D human body scan data. 155 women in their 40's or 50's were measured by Martin's anthropometry. Merging the data of 914 middle aged women provided by Korean agency for technology and standards, total of 1,069 subjects' data were analyzed. For data analysis, ANOVA, factor analysis and cluster analysis were done using SPSS PC+. And representative subject of each cluster was selected and they participated in 3D scanning and Torso pattern suggested for middle-aged women Torso pattern which investing the amount of ease according to each group for diffuse front interscye 30%, armscye circumference 30%, back interscye 40% using 3D human body scan data. The results of this study are as follows. Firstly, as a result of the factor analysis, the first factor was 'obesity index of body', The second factor was 'verticality size of body', The third factor was 'verticality length of upper bodice', The fourth factor was 'drop value to represent silhouette', and the fifth factor was 'physique of upper bodice'. And, middle-aged women type were classified 3 types according to the cluster analysis. Type 1(Y-type) was the long upper Torso with wide shoulder. Type 2(H-type) was flat-body type with comparatively thin upper bodice and thin lower bodice. And type 3(A-type) was the obese type with comparatively thin upper bodice and fat lower bodice. Secondly, using CAD program, point filtering was performed and approximated surface model was made. It used that generated surface smoothing corrected for abnormally extruded points and scattered points based on the curvature information. And 3D surfaces were flatted onto the plane by the internal tools of CAD program. Difference ratios of outline length and area between 3D curves and 2D plane were 0.42% and 0.54%, respectively. Third, wearing test by the sensory evaluation showed that distinct difference almost every category. The movement functionality test shows that, in all the tests which reveal significant differences, especially, 'comparison pattern A' experienced inconvenience to neck width and neck depth.

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

Building 3D model using laser scan data

  • Choi, Sung-Hun;Kim, Dong-Seok;Lee, Heung-Jae;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.101-105
    • /
    • 2002
  • In this paper we describe techniques for the automated creation of geometric correct 3-D models of the building using two 2-D laser scanners. One of the laser scanners is used for position estimation using a scan matching algorithm, while the other is used to build 3-D models of the facade of the buildings. Those models can be used for virtual reality, tele-presence, digital cinematography and urban planning applications. Results are shown for building models in our campus using real data acquired from two sensors.

  • PDF