• Title/Summary/Keyword: 2D pocket

Search Result 63, Processing Time 0.343 seconds

Study on the Atmospheric Plasma Characteristics of Dielectric Barrier Discharge due to a Variation of the Duty Ratio of Pulse Modulation (펄스변조의 듀티비 변경에 따른 DBD 대기압 플라즈마 특성 연구)

  • Park, Jong-in;Hwang, Sang-hyuk;Jo, Tae Hoon;Yun, Myoung Soo;Kwak, Hyoung sin;Jin, Gi nam;Jeon, Buil;Choi, Eun Ha;Kwon, Gi-Chung
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.616-621
    • /
    • 2015
  • Atmospheric pressure plasma is used in the biological and medical fields. Miniaturization and safety are important in the application of apply atmospheric plasma to bio devices. In this study, we made a small, pocket-sized inverter for the discharge of atmospheric plasma. We used pulse power to control the neutral gas temperature at which the, when plasma was discharged. We used direct current of 5 V of bias(voltage). The output voltage is about 1 to 2 kilo volts the frequency is about 80 kilo hertz. We analyzsed the characteristics of the atmospheric plasma using OES(Optical emission spectroscopy) and the Current-Voltage characteristic of pulse power. By calculating of the current voltage characteristics, we were able to determine that, when the duty ratio increased, the power that actually effects the plasma discharge also increased. To apply atmospheric plasma to human organisms, the temperature is the most important factor, we were able to control the temperature by modulating the pulse power duty ratio. This means we can use atmospheric plasma on the human body or in other areas of the medical field.

Impact of scaling and root planing on C-reactive protein levels in gingival crevicular fluid and serum in chronic periodontitis patients with or without diabetes mellitus

  • Mohan, Mahendra;Jhingran, Rajesh;Bains, Vivek Kumar;Gupta, Vivek;Madan, Rohit;Rizvi, Iram;Mani, Kanchan
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.4
    • /
    • pp.158-168
    • /
    • 2014
  • Purpose: The present study was conducted to evaluate the impact of scaling and root planing (SRP) on the C-reactive protein (CRP) levels of gingival crevicular fluid (GCF) and serum in chronic periodontitis patients with type 2 diabetes mellitus (T2DM-CP) or without type 2 diabetes mellitus (NDM-CP). Methods: Forty-eight human participants were divided into two groups: an experimental (T2DM-CP) group (group I, n=24) comprising chronic periodontitis patients with random blood sugar ${\geq}200mg/dL$ and type 2 diabetes mellitus, and control (NDM-CP) group (group II, n=24) of those with chronic periodontitis and random blood sugar <200 without T2DM for the study. All subjects underwent nonsurgical periodontal therapy (NSPT) including complete SRP and subgingival debridement. Periodontal health parameters, plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), GCF volume (GCF vol), GCF-CRP, random blood glucose (RBS), glycated hemoglobin, and systemic inflammatory markers, serum CRP, total leukocyte count (TLC), neutrophil count (Neutr) and lymphocyte count (Lymph), were evaluated at baseline, 1 month, and 3 months after SRP. Results: NSPT resulted in statistically significant improvement in periodontal health parameters (PI, GI, PPD, CAL, GCF vol), CRP levels in serum as well as GCF of both groups I and II. The mean improvement in periodontal health parameters (PI, GI, PPD, CAL, GCF vol), CRP levels in serum and GCF was greater in group I than group II after NSPT. There was nonsignificant increase in GCF-CRP, TLC, Lymph, and RBS, and a significant increase in Neutr and Serum CRP in group II at 1 month. The Serum CRP level of 20 out of 24 group II patients had also increased at 1 month. Conclusions: The CRP levels in both GCF and serum were higher in T2DM-CP patients than in NDM-CP patients. Although there was a significant improvement in both the groups, greater improvement was observed in both GCF and serum samples of T2DM-CP patients.

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.