• Title/Summary/Keyword: 2D hand scanning

Search Result 25, Processing Time 0.027 seconds

Automatic Hand Measurement System from 2D Hand Image for Customized Glove Production

  • Han, Hyun Sook;Park, Chang Kyu
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.468-476
    • /
    • 2016
  • Recent advancements in optics technology enable us to realize fast scans of hands using two-dimensional (2D) image scanners. In this paper, we propose an automatic hand measurement system using 2D image scanners for customized glove production. To develop the automatic hand measurement system, firstly hand scanning devices has been constructed. The devices are designed to block external lights and have user interface to guide hand posture during scanning. After hands are scanned, hand contour is extracted using binary image processing, noise elimination and outline tracing. And then, 19 hand landmarks are automatically detected using an automatic hand landmark detection algorithm based on geometric feature analysis. Then, automatic hand measurement program is executed based on the automatically extracted landmarks and measurement algorithms. The automatic hand measurement algorithms have been developed for 18 hand measurements required for custom-made glove pattern making. The program has been coded using the C++ programming language. We have implemented experiments to demonstrate the validity of the system using 11 subjects (8 males, 3 females) by comparing automatic 2D scan measurements with manual measurements. The result shows that the automatic 2D scan measurements are acceptable in the customized glove making industry. Our evaluation results confirm its effectiveness and robustness.

Comparison between Alginate Method and 3D Whole Body Scanning in Measuring Body Surface Area (알지네이트를 이용한 체표면적 측정방법과 삼차원 스캐닝에 의한 체표면적 측정방법의 비교)

  • Lee Joo-Young;Choi Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1507-1519
    • /
    • 2005
  • The purpose of this study was to compare two methods of measuring body surface area (BSA). The BSA of Korean adults was measured using both three-dimensional (3D) scanning and an alginate method. Two males (one overweight and one lean) and one overweight female participated as subjects. The results were as follows: First, the 3D scanned BSA of all three subjects was smaller than the BSA measured using the alginate method by as much as $6-14\%$. The difference in methods was greater in the overweight participants than in the lean subject. Second, the results comparing the BSA obtained using these two methods and the BSA estimated by 10 previously developed formulas, showed that the 3D scanned BSA was the smallest among the 12 BSAs. Third, in comparing the regional differences between these two methods, the regional BSA of the lean subject (male 2) did not show any significant difference, but the overweight subjects (male 1, female 1) showed a significant difference. Forth, the biggest difference in regional BSA obtained through these two methods was in the hand, for all three subjects. The 3D scanned hand surface area was smaller than the hand surface area measured by the alginate method by as much as $24-34\%$. Fifth, in the percentage of regional BSA, there was no significant difference in these two methods. The reasons for the underestimation in the 3D scanning might be because: 1) the 3D scanner can not recognize the folding and shading of body parts, such as the finger, toe, ear, armpit, crotch and breast, 2) 3D patching and smoothing processes depend on researchers. However, the 3D scanning method is applicable to the estimation of the entire BSA, if the surface area of the hands is known, and the participant is not overweight.

Development of a 3D Semi-Automatic Measurement Protocol for Hand Anthropometric Measurement (손 치수 측정을 위한 3차원 반자동 측정 방법 개발)

  • Lee, Won-Sup;Yoon, Sung-Hye;You, Hee-Cheon
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • Measurement protocols for hand anthropometry have been studied for ergonomic product design. The present study developed a 3D semi-automatic measurement protocol (3D-SAMP) which semi-automatically measures various hand dimensions using a 3D scanner. The 3D-SAMP was compared with the conventional direct measurement method (DMM) to examine its effectiveness. The 3D-SAMP consists of (1) fabricating a plaster cast of the hand, (2) placing landmarks on the plaster hand, (3) scanning the plaster hand with a 3D scanner, (4) identifying automatically the positions of the landmarks on the digital hand, and (5) extracting automatically hand anthropometric measurements (lengths, widths, thicknesses, and circumferences). An evaluation experiment conducted in the study found the 3D-SAMP preferred to the DMM in terms of reliability (the number of dimensions exceeding the variability criteria SD=2 mm and CV=5% : 3D-SAMP =2 and DMM=24) and ease of measurement (3D-SAMP=5.2 and DMM=4.3 out of 7). The 3D-SAMP can be applied to ergonomic design of a hand-held product.

Comparison of Virtual 3D Tree Modelling Using Photogrammetry Software and Laser Scanning Technology (레이저스캐닝과 포토그래메트리 소프트웨어 기술을 이용한 조경 수목 3D모델링 재현 특성 비교)

  • Park, Jae-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.304-310
    • /
    • 2020
  • The technology in 3D modelling have advanced not only maps, heritages, constructions but also trees modelling. By laser scanning(Faro s350) and photogrammetry software(Pix4d) for 3D modelling, this study compared with real coniferous tree and both technology's results about characteristics of shape, texture, and dimensions. As a result, both technologies all showed high reproducibility. The scanning technique showed very good results in the reproduction about bark and leaves. Comparing the detailed dimensions on it, the error between the actual tree and modelling with scanning was 1.7~2.2%, and the scanning result was larger than the actual tree. The error between the actual tree and photogrammetry was only 0.2~0.5%, which was larger than the actual tree. On the other hand, the dark areas's modelling was not fully processed. This study is meaningful as a basic research that can be used for tree DB on BIM for the landscape architecture, landscape design and analysis with AR technology, historical tree and heritage also.

Development of a Ultrasound Probe for 3-D Ultrasonic Imaging (3차원 의료기기용 초음파진단기 프로브 개발)

  • Park, Jong-Soo;Kim, Seong-Rae;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.87-93
    • /
    • 2005
  • Three-dimensional ultrasonic probes being applied to the medical imaging can be grouped into three depending on the scanning methods, which are a mechanical type system, a free-hand system, and 2D phased arrays system. A mechanical type scanner uses a mechanically driven transducer to acquire series of 2D plane images. By integrating these images, a 3-D medical image can be constructed. A motor driving mechanism is a conventional choice for mechanically driving a transducer assembly which picks the raw ultrasonic images up. In this paper we attempt to design a 3D ultrasonic probe which has a operating mechanism of s tilting 3-D scanning. The motion of a transducer assembly of the ultrasonic probe is analytically modelled. We propose a selection procedure for the diameter of a wire rope driving the transducer assembly and the size of torsional spring which gives an initial tension to wire ropes.

  • PDF

Analysis of Skin Movement Artifacts Using MR Images (자기공명 영상을 이용한 피부 움직임 에러 분석에 관한 연구)

  • ;N. Miyata;M. Kouchi;M. Mochimaru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.164-170
    • /
    • 2004
  • The skin movement artifacts are referred to as the relative motion of skin with respect to the motion of underlying bones. This is of great importance in joint biomechanics or internal kinematics of human body. This paper describes a novel experiment that measures the skin movement of a hand based on MR(magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images, and (3) registration of the 3D models. The MR images of the hand are captured by 3 different postures. And the surface makers which are attached to the skin are employed to trace the skin motion. After reconstruction of 3D models from the scanned MR images, the global registration is applied to the 3D models based on the particular bone shape of different postures. The results of registration are then used to trace the skin movement by measuring the positions of the surface markers.

Analysis of skin movement using MR images (자기공명 영상을 이용한 피부 움직임 분석에 관한 연구)

  • ;Natsuki Miyata;Makiko Kouchi;Masaaki Mochimaru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper describes a novel experiment that measures the skin movement of a hand based on MR (magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images. and (3) registration of the 3D models. The results of registration are used to trace the skin movement with respect to underlying bone motions by measuring the positions of the surface markers.

  • PDF

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy (Scanning Electrochemical Microscopy를 이용한 한우 체내 수정란의 호흡률 조사)

  • Kim, Hyun;Bok, Nan-Hee;Kim, Sung-Woo;Do, Yoon-Jung;Kim, Min-Kyu;Cho, Sang-Rae;Seong, Hwan-Hoo;Kim, Dong Hun;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • Oxygen consumption is a useful parameter for evaluating mammalian embryo quality, since individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we measured to investigate the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of pluripotent gene and anti-oxidant enzyme was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). Oxygen consumption of blastocyst was measured using a SECM and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts ($10.2{\times}10^{15}/mols^{-1}$ versus $6.4{\times}10^{15}/mols^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7 and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\sim}10^{15}/mols^{-1}$, respectively. Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\times}10^{15}/mols^{-1}$, respectively. GPX1 and SOD1 were significantly increased in over -10.0 group than below 10.0 groups but in catalase gene, there was no significant difference. On the other hand, In OCT-4 and Sox2, pluripotent gene, there was a significant difference (p<0.05) between the below-10.0 ($0.98{\pm}0.1$) and over 10.0 ($1.79{\pm}0.2$). In conclusion, these results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.

Effects of Mixing Ratio of Silicon Carbide Particles on the Etch Characteristics of Reaction-Bonded Silicon Carbide

  • Jung, Youn-Woong;Im, Hangjoon;Kim, Young-Ju;Park, Young-Sik;Song, Jun-Baek;Lee, Ju-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.349-353
    • /
    • 2016
  • We prepared a number of reaction-bonded silicon carbides (RBSCs) made from various mixing ratios of raw SiC particles, and investigated their microstructure and etch characteristics by Reactive Ion Etch (RIE). Increasing the amount of $9.5{\mu}m$-SiC particles results in a microstructure with relatively coarser Si regions. On the other hand, increasing that of $2.6{\mu}m$-SiC particles produces much finer Si regions. The addition of more than 50 wt% of $2.6{\mu}m$-SiC particles, however, causes the microstructure to become partially coarse. We also evaluated their etching behaviors in terms of surface roughness (Ra), density and weight changes, and microstructure development by employing Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM) techniques. During the etching process of the prepared samples, we confirmed that the residual Si region was rapidly removed and formed pits isolating SiC particles as islands. This leads to more intensified ion field on the SiC islands, and causes physical corrosion on them. Increased addition of $2.6{\mu}m$-SiC particles produces finer residual Si region, and thus decreases the surface roughness (Ra.) as well as causing weight loss after etching process by following the above etching mechanism.