• Title/Summary/Keyword: 2D dynamic behavior

Search Result 198, Processing Time 0.026 seconds

Optimum forming design of A350 LF2 alloy using the deformation processing map (변형 공정지도를 활용한 A350 LF2 합금의 최적성형 조건설계에 대한 연구)

  • Jung, E.J.;Yeom, J.T.;Kim, J.H.;Lee, D.G.;Pak, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • Hot deformation behavior of A350 LF2 alloy was characterized by compression tests in the temperature range of 800-$1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$. The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing processing map. Processing maps were generated using the dynamic material model (DMM). The combination of dynamic material model and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming.

  • PDF

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

A Study on the Behavior of a Closely-spaced Tunnel by Using Particle Flow Code (입자 유동 해석(PFC)을 통한 근접터널의 거동에 관한 연구)

  • Suh, Byung-Wook;Jo, Seon-Ah;Jung, Seon-Ah;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.159-169
    • /
    • 2008
  • In general, it is considered that a pillar between closely-spaced tunnel is sensitive for stress concentration. Stability of a pillar is key factor for excavation of closely-spaced tunnel. In this paper, the study is focused on tracing the behaviors, displacement and plotting damages around tunnels that is modelled with Particle Flow Code, $PFC^{2D}$. Parametric study was performed with changing distance between center of tunnels and coefficient of earth pressure(K). Scaled-model tests were also carried out to validate a numerical analysis model. It was found that $PFC^{2D}$ could show dynamic visualized result in quite good agreement with the experimental test.

  • PDF

Dynamic Characteristics of Lumbar Spine After Vertebroplasty (척추성형술 시술 후 요추의 동적 특성)

  • Kim S.H.;Ko S.K.;Chae S.W.;Park J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.240-243
    • /
    • 2005
  • Osteoporosis, one of the age-related disease causes vertebra body fracture due to weakening trabecular bone and makes a substantial effect on load sharing among vertebras. Recently, vertebroplasty is one of the most popular treatment, as augmenting PMMA into vertebra. Biomechanical studies about vertebroplasty have been evaluated by several experiments or analysis under static loading but there has been no study on response under dynamic loading. This study included the FE analysis of patients who treated vertebroplasty under dynamic loading. For this study, 3-D FE model of lumbar spine(L1-L2) was modeled from CT scanning data and compared with experimental results in vitro in order to validate this model. Biomechanical behavior about each of normal person, osteoporotic patient and patient treated vertebroplasty for quantitative evaluations of vertebroplasty was compared and investigated.

  • PDF

Dynamic Material Property of Mn-B Alloy High-Strength Steel (Mn-B 합금계 고강도 강의 동적 물성)

  • Choi, Chang;Hong, Sungin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.124-131
    • /
    • 1996
  • The dynamic material property of Mn-B ally high-strength steel is investigated through the rod impact test which is one of simple test methods for the analysis of the material behavior under high-strain-rate. Rod impact test is performed to produce the deformed shape of rod and analyzed by the one-dimensional theory based on conservation law and the two-dimensional hydrocode AUTODYN-2D. The dynamic yield stress is determined and compared with the static yield stress to investigate the strain-rate sensitivity of Mn-B alloy high-strength steel.

  • PDF

Applicability Evaluation of High-Speed, High-Pressure Dynamic Compression Technology for Powder Molding of Pyrophyllite (연납석 분말 성형을 위한 고속고압 동적 압축 기술의 적용성 평가)

  • Seong-Seung Kang;Jeongdu Noh
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.38-48
    • /
    • 2024
  • This study is to evaluate the applicability of high-speed, high-pressure dynamic compression technology for the powder molding of talc. To achieve this, powder molding test was conducted using a self-developed high-speed, high-pressure dynamic compression device, and the results were analyzed. Additionally, the behavior characteristics of pyrophyllite powder particles under dynamic compression were analyzed using the PFC2D. Quantitative analyses, as well as mapping and point analyses, were conducted using the SEM on pyrophyllite from the Naju ceramic Mine and the Bugok mine. The results showed that the weight ratio of composed elements in both mines was in the order of oxygen > silicon > aluminum. A pyrophyllite powder solid with a diameter of 14.5 mm and a thickness of 3 mm was successfully produced using a high-speed, high-pressure dynamic compression device capable of generating an instantaneous compressive force with a 30 kgf projectile dropped from a height of 1.5 m in about 0.4 seconds. Numerical analysis of pyrophyllite powder using PFC2D analyzed that in the numerical model, the compression ratio was approximately 56%, and the porosity decreased from 16.0% to 1.0%, indicating almost no remaining pores.

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

The Interpretation of Separation Mechanism of Ridge-Cut Explosive Bolt Using Software Simulation Program

  • Lee, Y. J.;Kim, D. J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.532-543
    • /
    • 2004
  • The present work have been developed the interpretation processor including the behavior of material failure and the separation phenomena under transient dynamic loading (the operation of explosive bolt) using AUTODYN V4.3, SoildWork 2003 and TrueGrid V2.1 programs. It has been demonstrated that the interpretation in ridge-cut explosive bolt under dynamic loading condition should be necessary to the appropriate failure model and the basic stress of bolt failure is the principal stress. The use of this interpretation processor developing the present work could be extensively helped to design the shape and the amount of explosives in the explosive bolt having a complex geometry. It is also proved that the interpretation processor approach is an accurate and effective analysis technique to evaluate the separation mechanism in explosive bolts.

  • PDF

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

Movement identification model of port container crane based on structural health monitoring system

  • Kaloop, Mosbeh R.;Sayed, Mohamed A.;Kim, Dookie;Kim, Eunsung
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.105-119
    • /
    • 2014
  • This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.