• Title/Summary/Keyword: 2D correlation spectroscopy

Search Result 61, Processing Time 0.033 seconds

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1345-1350
    • /
    • 2003
  • Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

Thermal Behavior of Langmuir-Blodgett Film of Poly(tert-butyl methacrylate) by Principal Component Analysis Based Two-Dimensional Correlation Spectroscopy

  • Jung, Young-Mee;Kim, Seung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2027-2032
    • /
    • 2005
  • This paper demonstrates details of thermal behavior of Langmuir-Blodgett (LB) film of poly(tert-butyl methacrylate) (PtBMA) by using the principal component analysis based two-dimensional correlation spectroscopy (PCA2D) through eigenvalue manipulating transformation (EMT). By uniformly lowering the power of a set of eigenvalues associated with the original data, the smaller eigenvalues becomes more prominent and the subtle contribution from minor components is now highlighted much more strongly than the original data. Thus, the subtle difference of thermal behavior of LB film of PtBMA from minor components, which is not readily detectable in the conventional 2D correlation analysis, is much more noticeable than the original data. PCA2D correlation spectra with EMT operation for the temperature-dependent IR spectra of LB film of PtBMA reveal the hidden property of phase transition processes during heating.

Extracting Frequency-Frequency Correlation Function from Two-Dimensional Infrared Spectroscopy: Peak Shift Measurement

  • Kwak, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3391-3396
    • /
    • 2012
  • Two-dimensional infrared (2D-IR) spectroscopy can probe the fast structural evolution of molecules under thermal equilibrium. Vibrational frequency fluctuation caused by structural evolution produced the time-dependent line shape change in 2D-IR spectrum. A variety of methods has been used to connect the evolution of 2D-IR spectrum with Frequency-Frequency Correlation Function (FFCF), which connects the experimental observables to a molecular level description. Here, a new method to extract FFCF from 2D-IR spectra is described. The experimental observable is the time-dependent frequency shift of maximum peak position in the slice spectrum of 2D-IR, which is taken along the excitation frequency axis. The direct relation between the 2D-IR peak shift and FFCF is proved analytically. Observing the 2D-IR peak shift does not need the full 2D-IR spectrum which covers 0-1 and 1-2 bands. Thus data collection time to determine FFCF can be reduced significantly, which helps the detection of transient species.

Generalized Two-dimensional (2D) Correlation Spectroscopy: Principle and Its Applications (일반화된 이차원 상관 분광학: 원리 및 응용)

  • Young Mee Jung;Seung Bin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.447-459
    • /
    • 2003
  • Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spectral data sets obtained during the observation of a system under some external perturbation. It is used in various fields of spectroscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) as well as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra obtained for a system under the same perturbation. Because of the wide range of applications of this technique, it has become one of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on, and for studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generalized 2D correlation spectroscopy and its applications that we have studied.

Determining the Dynamic Sequence of Carbonyl Groups in a Rod-Coil Liquid Crystalline Oligomer Using Two-Dimensional Raman Correlation Spectroscopy (액정올리고머에 있는 카보닐그룹들의 동적순서에 대한 2차원 라만상관분광법 연구)

  • Jung, Kab-Sang;Yu, Soo-Chang;Han Yu, Keon-Ok
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.261-265
    • /
    • 2004
  • We investigated the order of local movement of functional groups (-C(=O)O) in a liquid crystalline (LC) oligomer (12-4) using 2D Raman correlation spectroscopy. The results suggest that the free carbonyl near the ethyl terminal group moved first, followed by the hydrogen-bonded group. The free carbonyl group between the biphenyl groups rarely moved. Interestingly, 2D sample-to-sample correlation spectroscopy (2D STSCS) revealed that some of the carbonyl modes started to move at far below (50$^{\circ}C$) the LC temperature (135$^{\circ}C$), countering conventional beliefs.

2D Correlation Analysis of Spin-Coated Films of Biodegradable P(HB-co-HHx)/PEG Blends

  • Kim, Min-Kyung;Ryu, Soo-Ryeon;Noda, Isao;Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4005-4010
    • /
    • 2011
  • We investigated thermal behavior of spin-coated films of P(HB-co-HHx)/PEG blends by using infraredreflection absorption (IRRAS) spectroscopy and 2D correlation spectroscopy. Based on 2D IRRAS correlation spectra, we could determine the sequence of spectral intensity changes with increasing temperature that PEG band changes first and then a band for crystalline component of P(HB-co-HHx) changes before a band for amorphous component. The intensities of bands for PEG and amorphous P(HB-co-HHx) were changed greatly as PEG weigh % of P(HB-co-HHx)/PEG blends increased. Transition temperatures of P(HB-co-HHx)/PEG blends were successfully determined by 2D gradient mapping method. The transition temperature of spincoated films of 98/2 and 90/10 P(HB-co-HHx)/PEG blends and 80/20 P(HB-co-HHx)/PEG blend determined by 2D gradient map are, respectively, about 137.5 and $132.5^{\circ}C$. Furthermore, P(HB-co-HHx)/PEG blends show an additional transition temperature that have been interpreted in terms of different lamellar thicknesses in spin coated films.

Characterization of Thermal Behavior of Biodegradable Poly(hydroxyalkanoate) by Two-Dimensional Correlation Spectroscopy

  • Jung, Young-Mee;Ozaki, Yukihiro;Noda, Isao
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.355-355
    • /
    • 2006
  • In this study, we have applied principal component analysis-based 2D (PCA2D) correlation spectroscopy to the temperature-dependent IR spectra of biodegradable poly(hydroxyalkanoate). PCA2D analysis reveals clearly that there are two components in crystalline band of C=O stretching mode without being hampered by noise. To better understand the thermal behavior of biodegradable poly(hydroxyalkanoate), eigenvalue manipulating transformation (EMT) technique was also employed. By uniformly lowering the power of a set of eigenvalues associated with the original data, the subtle contributions from minor eigenvectors are highlighted. Details of thermal behavior of biodegradable poly(hydroxyalkanoate) studied by PCA2D correlation spectroscopy with EMT will be discussed.

  • PDF

Monitoring Kinetics Using Near Infrared Spectra and Two-dimensional Correlation Spectroscopy

  • Berry, R. James;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1282-1282
    • /
    • 2001
  • Near Infrared (NIR) spectra has long been used in industry to monitor rates of reactions via calculation of analyte concentrations. However, the kinetic information is inherent in the data through spectral ratios. Two-dimensional correlation spectroscopy (2D-COS) is a spectral method that is based on changes (e.g. concentration) in time and is therefore uniquely suited for reaction monitoring. This method is especially useful in the understanding of how the reaction(s) proceeds. We will show the application of 2D-COS to synthetic kinetic data from different reaction orders to illustrate the method. We will then show application to real reactions of various orders. Finally, we will illustrate how 2D-COS will be of specific interest to developing optimized industrial reactions.

  • PDF