• Title/Summary/Keyword: 2D and 3D models

Search Result 1,649, Processing Time 0.03 seconds

Introduction of 3D Printing Technique applied for producing Physical Models of Underground Mine Openings (지하광산갱도의 물리모형 구현을 위한 3D프린팅 기술 적용사례)

  • Yoon, Dong-Ho;Fereshtenejad, Sayedalireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Physical models of underground mines are very useful to the design of mine openings and the management of work progress of mining companies as well as to consulting. Even though 3D image realization techniques for mine openings have already been developed by various companies the physical models are still widely used because they can provide better understanding without sophisticated equipments for the most of people. Conventional materials for the physical models are paper and acryl which demand a lot of time and labor to make the model even with low precision and high cost. In this research, 3D printing technique is adopted to develop the physical model with relatively short time, low cost, and proper degree of precision. Finally the computer software "UMine2STL" was developed and verified by comparing the printed product with its design.

Method to Use the Augmented Reality for Construction Planning and Management

  • Nam, Keong-Woo;Kang, Chulung;Jang, Myunghoun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1067-1074
    • /
    • 2022
  • An architect creates his/her design to meet owner's requirements. Floor plans, perspective drawings, and scale models are used in order for the owner to choose the design. The tools are a little helpful for communication between the architect and the owner in case the owner does not know architecture. The scale models are good, but it is hard to make scale models while design is in progress. 3D CAD is a good tool for communication, but it is time-consuming and requires high-performance computer hardware. Augmented reality is able to show 3D virtual models that are updated by the architect with smart devices such as a smart phone and a tablet PC. The owner frequently reviews the updated design anytime anywhere. This study proposes a method to use augmented reality for architectural design and construction management. The method supports the communication between the owner, the architect and the contractor to review updated designs, and to complete the building project. 3D models expressed in augmented reality are created using SketchUp with 2D drawings for building construction. An Android application implementing augmented reality is developed by Qualcomm Vuforia and Unity on smart devices. Drawings as markers and 3D models are connected in Unity. And functions that temporarily hide unnecessary parts can be implemented in C# programming language. If an owner, an architect, or a contractor looks at a smart phone on a 2D drawing, he/she can identify building elements such as 3D buildings or columns on a screen. This can help communication between them.

  • PDF

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Development of IFC Model Extension and Drawing Representation Expression System for nD Model-Based Transposition of Complex Engineering Products and Services (복합 시설물의 nD 모델 호환을 위한 IFC 모델 확장개발 및 도면 생성 표현 체계에 관한 기초연구)

  • Kim, In-Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.393-402
    • /
    • 2006
  • The purpose of this study is to develop mechanisms of nD model-based design by the combination of 2D drawing standards and 3D building models from the current 2D and text-based design. The aim of this study can be archived by defining the 2D model extension definitions for the IFC model development and harmonizing existing 2D standards. The paper examines 1) 3D Representation of Building Element and Building Services element, and 2D Model extension of IFC2X.2, 2) Basic development of additional 2D element that should be added to IFC model, and 3) mapping method between current 2D standard and IFC2.X2. Following this approach, the interoperability problem between 3D model and 2D drawing can be solved and finally an extended data model could be developed.

Molecular Docking, 3D QSAR and Designing of New Quinazolinone Analogues as DHFR Inhibitors

  • Yamini, L.;Kumari, K. Meena;Vijjulatha, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2433-2442
    • /
    • 2011
  • The three dimensional quantitative structure activity relationship (3D QSAR) models were developed using Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking studies. The fit of Quinazolinone antifolates inside the active site of modeled bovine dihydrofolate reductase (DHFR) was assessed. Both ligand based (LB) and receptor based (RB) QSAR models were generated, these models showed good internal and external statistical reliability that is evident from the $q^2_{loo}$, $r^2_{ncv}$ and $r^2_{pred}$. The identified key features enabled us to design new Quinazolinone analogues as DHFR inhibitors. This study is a building bridge between docking studies of homology modeled bovine DHFR protein as well as ligand and target based 3D QSAR techniques of CoMFA and CoMSIA approaches.

On Comparison between 2-D and 3-D Numerical Models used to Analyze the Wave Field around a Permeable Submerged Breakwater (투과성잠제 주변의 파동장 해석을 위한 2-D 및 3-D 수치계산의 비교)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2008
  • The aim of this study is to compare the numerical results obtained by 2-D and 3-D models which are used to examine the wave field around a permeable submerged breakwater. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is used and validated by comparing with existing experimental data. And then, the numerical test on the wave field around a permeable submerged breakwater is performed. It is revealed from the numerical results that, at the onshore side of the submerged breakwater, the wave height by 2-D analysis is higher than that by 3-D analysis. Also, the time-averaged mean flow around a submerged breakwater is discussed in detail.

3D Model Retrieval Using Geometric Information (기하학 정보를 이용한 3차원 모델 검색)

  • Lee Kee-Ho;Kim Nac-Woo;Kim Tae-Yong;Choi Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1007-1016
    • /
    • 2005
  • This paper presents a feature extraction method for shape based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scaling, it is necessary to preprocess the 3D models to represent them in a canonical coordinate system. We use the PCA(Principal Component Analysis) method to preprocess the 3D models. Also, we apply that to make a MBR(Minimum Boundary Rectangle) and a circumsphere. The proposed algorithm is as follows. We generate a circumsphere around 3D models, where radius equals 1(r=1) and locate each model in the center of the circumsphere. We produce the concentric spheres with a different radius($r_i=i/n,\;i=1,2,{\ldots},n$). After looking for meshes intersected with the concentric spheres, we compute the curvature of the meshes. We use these curvatures as the model descriptor. Experimental results numerically show the performance improvement of proposed algorithm from min. 0.1 to max. 0.6 in comparison with conventional methods by ANMRR, although our method uses .relatively small bins. This paper uses $R{^*}-tree$ as the indexing.

Multiresolution 3D Facial Model Compression (다해상도 3D 얼굴 모델의 압축)

  • 박동희;이종석;이영식;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.602-607
    • /
    • 2002
  • In this paper, we proposed an approach to efficiently compress and transmit multiresoltion 3D lariat models for multimedia and very low bit rate applications. A personal facial model is obtained by a 3D laser digitizer, and further re-quantized at several resolutions according to different scope of applications, such as animation, video game, and video conference. By deforming 2D templates to match and re-quantize a 3D digitized facial model, we obtain its compressed model. In the present study, we create hierarchical 2D lariat wireframe templates are adapted according to facial feature points and the proposed piecewise chainlet affined transformation(PACT) method. The 3D digitized model after requantization are reduced significantly without perceptual loss. Moreover the proposed multiresoulation lariat models possessed of hierarchial data structure are apt to be progressively transmitted and displayed across internet.

  • PDF

2D SUB-3D STM Approach for Design and Analysis of 3D Structural Concrete (3D 콘크리트 부재의 해석 및 설계를 위한 2D SUB-3D STM 방법)

  • 윤영묵;김승억;오진우;박정웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.415-420
    • /
    • 1998
  • In this paper, 2D SUB-3D STM approach for analysis and design of 3D structural concrete is presented. In the approach several 2D sub strut-tie models which are representations of compressive and tensile stress flows of each projected plane of 3D structural concrete are utilized in the sketch of a 3D strut-tie model, in the evaluation of effective strengths of compressive concrete struts, and in the verification of geometric compatibility and bearing capacity of critical nodal zones of 3D strut-tie model. To prove the validity and rationality of the suggested approach, the behavior and strength of a prestressed box girder diaphragm tested to failure are evaluated.

  • PDF

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF