• Title/Summary/Keyword: 2D and 3D models

Search Result 1,654, Processing Time 0.038 seconds

Influence of threshold value of computed tomography on the accuracy of 3-dimensional medical model (전산화단층 촬영상의 임계치가 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Lee Byeong-Do;Lee Wan
    • Imaging Science in Dentistry
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Purpose: To evaluate the influence of threshold value of computed tomography on the accuracy of rapid prototyping (RP) medical model Material and Methods : CT datas of a human dry skull were transferred from CT scanner via compact disk to a personal computer (PC). 3-dimensional image reconstruction on PC by V-works/sup TM/ 3.0 (CyberMed. Inc.) software and RP models fabrication were followed. 2-RP models were produced by threshold value of 500 and 800 selected in surface rendering process. Linear measurements between arbitrary 12 anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared. Thus, the accuracy of 500 RP and 800RP models was respectively evaluated. Results: There was mean difference (% difference) in absolute value of 2.27 mm (2.73%) between linear measurements of dry skull and 500 RP model. There was mean difference (% difference) in absolute value of 1.94 mm (2.52%) between linear measurements of dry skull and 800 RP model. Conclusion: Slight difference of threshold value in rendering process of 3-D modelling made a influence on the accuracy of RP medical model.

  • PDF

Analysis of Hydraulic Characteristics Upstream of Dam and in Spillway Using Numerical Models (수치모형을 이용한 댐 상류 및 여수로 수리현상 해석)

  • Kim, Young-Han;Oh, Jung-Sun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.761-776
    • /
    • 2003
  • Numerical models were employed to investigate the hydrodynamics of water flow in the lake behind a dam and the spillway where supercritical flows and negative pressures are likely to occur. In this study, 2-D model, RMA2 was employed to examine the upstream flow pattern and 3-D CFD model, FLUENT was used to evaluate the three-dimensional flow in the approaching region and flow distributions in the spillways and discharge culverts. The bathymetry and the details of structures were carefully taken into consideration in building the models. The results from applying the 2-D model for the planned Hantan River Dam show that large eddies, the velocity of which reaches up to 1 m/s are occurring in several places upstream of the dam. That means that the 2-D numerical model could be utilized to investigate the two-dimensional flow patterns after the construction of a dam. Three-dimensional numerical results show that the approach flow varies depending on stages and discharge conditions, and velocities at spillways, discharge culverts, and sediment flushing tunnels are differently distributed. The velocity distributions obtained from the numerical model and a hydraulic model at the centerline of spillways 100 m upstream of the dam show reasonably similar results. It is expected that 2-D and 3-D numerical models ate useful tools to help optimize the dam design through investigating the flow patterns in the spillway and at the upstream of the dam, which is not always feasible in hydraulic modeling.

A Survey for 3D Object Detection Algorithms from Images

  • Lee, Han-Lim;Kim, Ye-ji;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.183-190
    • /
    • 2022
  • Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future direction in this field.

3D Stereoscopic Navigation of Buildings Considering Visual Perception (시각적 인지를 고려한 건축물의 3D 스테레오 내비게이션)

  • Shin, Il-Kyu;Yoon, Yeo-Jin;Choi, Jin-Won;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.63-72
    • /
    • 2012
  • As BIM(Building Information Modeling) is widely used in the construction process the need for exploring building models realistically is also growing. In this paper, we present a 3D stereoscopic navigation method for virtual buildings considering virtual perception. We first find out factors that may cause virtual discomfort while navigating stereoscopic building models, and then develop a method for automatically adjusting the range of virtual camera separation. In addition, we measure each user's JND(Just Noticeable Difference) in depth to adjust virtual camera separation and movement. The presented method can be used for various architectural applications by creating user-customized 3D stereoscopic contents.

Development of AI-Based Body Shape 3D Modeling Technology Applicable in The Healthcare Sector (헬스케어 분야에서 활용 가능한 AI 기반 체형 3D 모델링 기술 개발)

  • Ji-Yong Lee;Chang-Gyun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.633-640
    • /
    • 2024
  • This study develops AI-based 3D body shape modeling technology that can be utilized in the healthcare sector, proposing a system that enables monitoring of users' body shape changes and health status. Utilizing data from Size Korea, the study developed a model to generate 3D body shape images from 2D images, and compared various models to select the one with the best performance. Ultimately, by proposing a system process through the developed technology, including personalized health management, exercise recommendations, and dietary suggestions, the study aims to contribute to disease prevention and health promotion.

Seamless Image Blending based on Multiple TIP models (다수 시점의 TIP 영상기반렌더링)

  • Roh, Chang-Hyun
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.30-34
    • /
    • 2003
  • Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry, Especially, TIP(Tour Into the Picture) is preferred for its simplicity in constructing 3D background scene. However, TP has a limitation that a viewpoint cannot go far from the origin of the TIP for the lack of geometrical information. in this paper, we propose a method to interpolating the TIP images to generate smooth and realistic navigation. We construct multiple TIP models in a wide area of the virtual environment. Then we interpolate foreground objects and background object respectively to generate smooth navigation results.

  • PDF

A Study on Terrain Construction of Unmanned Aerial Vehicle Simulator Based on Spatial Information (공간정보 기반의 무인비행체 시뮬레이터 지형 구축에 관한 연구)

  • Park, Sang Hyun;Hong, Gi Ho;Won, Jin Hee;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1122-1131
    • /
    • 2019
  • This paper covers research on terrain construction for unmanned aerial vehicle simulators using spatial information that was distributed by public institutions. Aerial photography, DEM, vector maps and 3D model data were used in order to create a realistic terrain simulator. A data converting method was suggested while researching, so it was generated to automatically arrange and build city models (vWorld provided) and classification methods so that realistic images could be generated by 3D objects. For example: rivers, forests, roads, fields and so on, were arranged by aerial photographs, vector map (land cover map) and terrain construction based on the tile map used by DEM. In order to verify the terrain data of unmanned aircraft simulators produced by the proposed method, the location accuracy was verified by mounting onto Unreal Engine and checked location accuracy.

Inelastic Stress Analysis of 1/4 Scale Prestressed Concrete Containment Vessel Model (프리스트레스 콘크리트 격납건물 1/4 축소모델의 비탄성응력해석)

  • 이홍표;전영선;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.301-308
    • /
    • 2004
  • The present study mainly focuses on the inelastic stress analysis of the 1/4 scale prestressed concrete containment vessel model(PCCV) under internal pressure and evaluates not only failure mode but also ultimate pressure capacity of the PCCV. Inelastic analysis is carried out 2D axisymmertic FE model and 3D FE model using four concrete material models which are Drucker-Prager Model, Chen-Chen Model, Damaged Plasticity Model and Menetrey-Willam Model. The uplift phenomenon of the basemat is considered in the 2D axisymmetric FE models. It is found from the 2D axisymmetric analysis results that both of Drucker-Prager model and Damaged Plasticity Model have a good performance and the uplift of the basemat is too small to influence on the global behavior of the PCCV. The FE analysis results on the ultimate pressure and failure mode have a good agreement with experimental results.

  • PDF

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism (파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현)

  • Choi, Seung Jin;Sung, Jae Hoon;Son, Byung Chul;Park, Choon Keun;Kwon, Sung Oh;Kim, Moon Chan;Lee, Sang Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF