• 제목/요약/키워드: 2D Laser Scanning System

검색결과 58건 처리시간 0.025초

리얼 타임 리눅스 시스템 설계 (Real Time Linux System Design)

  • 이아리;홍선학
    • 디지털산업정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, we implemented the object scanning with nxtOSEK which is an open source platform. nxtOSEK consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK(Automotive real time Kernel) and TOPPERS/JSP Real-Time Operating System source code that includes ARM7 specific porting part, and glue code make them work together. nxtOSEK can provide ANSI C by using GCC tool chain and C API and apply for real-time multi tasking features. We experimented the 3D scanning with ultra sonic and laser sensor which are made directly by laser module diode and experimented the measurement of scanning the object by knowing x, y, and z coordinates for every points that it scans. In this paper, the laser module is the dimension of $6{\times}10[mm]$ requiring 5volts/5[mW], and used the laser light of wavelength in the 650[nm] range. For detecting the object, we used the beacon detection algorithm and as the laser light swept the objects, the photodiode monitored the ambient light at interval of 10[ms] which is called a real time. We communicated the 3D scanning platform via bluetooth protocol with host platform and the results are displayed via DPlot graphic tool. And therefore we enhanced the functionality of the 3D scanner for identifying the image scanning with laser sensor modules compared to ultra sonic sensor.

포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발 (Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor)

  • 맹희영;성봉현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • 대한공간정보학회지
    • /
    • 제24권2호
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

단일 레이저 포인터를 이용한 저복잡도 휴대형 3D 스캐너 (Low-Complexity Handheld 3-D Scanner Using a Laser Pointer)

  • 이경미;이연경;박도영;유훈
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.458-464
    • /
    • 2015
  • This paper proposes a portable 3-D scanning technique using a laser pointer. 3-D scanning is a process that acquires surface information from an 3-D object. There have been many studies on 3-D scanning. The methods of 3-D scanning are summarized into some methods based on multiple cameras, line lasers, and light pattern recognition. However, those methods has major disadvantages of their high cost and big size for portable appliances such as smartphones and digital cameras. In this paper, a 3-D scanning system using a low-cost and small-sized laser pointer are introduced to solve the problems. To do so, we propose a 3-D localization technique for a laser point. The proposed method consists of two main parts; one is a fast recognition of input images to obtain 2-D information of a point laser and the other is calibration based on the least-squares technique to calculate the 3-D information overall. To verified our method, we carry out experiments. It is proved that the proposed method provides 3-D surface information although the system is constructed by extremely low-cost parts such a chip laser pointer, compared to existing methods. Also, the method can be implemented in small-size; thus, it is enough to use in mobile devices such as smartphones.

Laser Scanning Path Generation for the Fabrication of Large Size Shape

  • Choi, Kyung-Hyun;Choi, Jae-Won;Doh, Yang-Hoe;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2175-2178
    • /
    • 2005
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It has been used to fabricate desirable part to sinter powder and stack the fabricated layer. Since the sintering process occurs using infrared laser having high thermal energy, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, the fast scanning path generation is necessary to eliminate the factors of quality deterioration. In case of fabricating larger size parts, the unique scanning device and scanning path generation should be considered. In this paper, the development of SLS machines being capable of large size fabrication(800${\times}$1000${\times}$800 mm, W${\times}$D${\times}$H) will be addressed. The dual laser system and the unique scanning device have been designed and built, which employ CO2 lasers and dynamic 3-axis scanners. The developed system allows scanning a larger planar surface with the desired laser spot size. Also, to generate the fast scanning paths, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction should be enabled. To evaluate the suggested method, the complex part will be used for the experiment fabrication.

  • PDF

Laser projection system that uses a 2D MEMS scanner

  • Seo, Jung-Hoon;Choi, Jung-Hwan;Kim, Yong-Ki;Yi, Jong-Kwon;Kwon, Jae-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.478-480
    • /
    • 2009
  • This experiment implemented a laser projection system that used the 2D MEMS scanner as the driving method for the display device. The 2D MEMS scanner, which can scan the images horizontally and vertically, was applied to drive the projection system using the interlaced scanning method. The laser was directly modulated to implement the grayscale and the images were WVGA resolution quality.

  • PDF

CNC레이저 가공기를 이용한 활자체 가공에 관한 연구 (A Study on the COntour Machining of Text using CNC Laser Machine)

  • 구영회
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

2-라인 레이저를 사용한 3차원 형상 복원기술 개발 (Three-dimensional Geometrical Scanning System Using Two Line Lasers)

  • 허상휴;이충규
    • 한국광학회지
    • /
    • 제27권5호
    • /
    • pp.165-173
    • /
    • 2016
  • 본 연구는 2개의 라인 레이저를 이용하여 3차원 형상을 획득하는 방법에 대해 제안한다. 제안하는 방법은 532 nm와 630 nm 파장의 레이저를 이용하여 2-라인 레이저를 생성하고 이를 대상객체에 조사하여 반사되는 빛을 영상센서로 획득하는 것을 통해 3차원 점 데이터를 연산한다. 이를 위해 레이저와 카메라 간의 위치를 결정하고 각 레이저의 평면 방정식 계수를 추정하며 삼각법을 통해 이미지 공간의 라인을 3차원 공간의 점으로 변환한다. 제안하는 시스템은 2개의 라인 레이저와 데이터 정합을 위한 스태핑 모터 제어부와 영상을 획득하고 레이저의 라인을 추출하는 영상처리부, 그리고 추출된 라인으로부터 3차원 점 데이터를 처리하고 3D 모델을 생성하는 3D 모델링부로 나뉜다. 제안하는 방법은 기존 단일 레이저 스캐닝 방식과 비교하여 가려짐으로 인해 발생하는 데이터 소실문제를 해결할 수 있다.

다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법 (Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System)

  • 주성하;윤상현;박상윤;허준
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.443-449
    • /
    • 2018
  • SLAM (Simultaneous Localization and Mapping) 기반 모바일 매핑 시스템을 활용한 실내 공간의 포인트 클라우드 취득은 건축물의 유지, 관리를 위한 as-built BIM (Building Information Model) 구축의 기초 공정이다. 본 연구에서는 다중 2D 레이저 스캐너로 구성된 모바일 매핑 시스템의 구축을 위한 시뮬레이션 기반 검정(calibration) 표적의 구조 결정 방법을 제안하였다. 2D 레이저 스캐너의 외부 표정요소 검정을 위해 (1) 원형, (2) 사각형, (3) 이중 원형, (4) 이중 사각형 형태의 표적을 구성하였다. 시뮬레이션을 통해 얻어진 각 표적 관측 값을 토대로, 최소제곱법 기반의 외부 표정요소 검정을 수행하였다. 그 결과 사각형 형태의 표적 구조가 주어진 시스템의 검정에 가장 적합한 형태임을 확인하였다. 또한 외부 표정요소 간의 높은 상관성을 확인할 수 있었으며, 표적의 구조에 따른 외부 표정요소의 검정 결과가 상이한 것으로 나타났다.

Monitoring of Grinding Wheel Wear in Surface Grinding Process by Using Laser Scanning Micrometer

  • Ju, Kwang-Hun;Kim, Hyun-Soo;Hong, Seong-Wook;Park, Chun-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.81-86
    • /
    • 2001
  • This paper deals with the monitoring of grinding wheel wear in surface grinding process. A monitoring system, which makes use of a laser scanning micrometer, is developed to measure the circumferential shape as well as the axial profile of grinding wheel. The monitoring system is applied to surface grinding processes. The experimental results show that the developed monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for evaluation the quality of ground surface and determining proper derssing time for the grinding wheel.

  • PDF