• Title/Summary/Keyword: 2D Joints

Search Result 293, Processing Time 0.024 seconds

Effects of a 12-week Combined Exercise Program on Gait Parameters in Elderly Women with Osteoarthritis

  • Lee, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of a 12-week combined exercise program on gait parameters in elderly women with osteoarthritis. Method: The subjects of this study were 11 elderly women (age: $67.09{\pm}2.47$, height: $157.35{\pm}4.30cm$, weight: $62.49{\pm}6.36kg$) with knee osteoarthritis. The combined exercise program of this study was divided into aerobic exercise and lower extremity strengthening exercises. The exercises were performed for 60 minutes per session, three times a week, for a total of 12 weeks. The maximum joint moments of the hip, knee, and ankle joints with walking were obtained with 8-3D cameras (MX-T20, Vicon, USA) and 2-force plate (AMTI OR6-7-400, AMTI, USA). SPSS Windows version 23.0 was used for statistical analysis. A paired t-test was used for pre-post comparison. An alpha level of .05 was utilized in all tests. Results: The maximum extension moment was significantly higher in the hip joint after P1 on the X axis. The maximum joint moment of P3 in extension was statistically significantly lower after intervention. On the Z axis, the maximum joint moment was significantly lower after the exercise intervention at P3. There was a statistically significant increase in the extension moment of the left and right knee joints in the X axis after exercise intervention. In the right ankle joint, P1 (plantar flexion moment) showed a statistically significant high moment after exercise intervention. Conclusion: These results suggest that combined exercise, including lower limb and aerobic exercise, may have a positive effect on mobility and walking moments in patients with osteoarthritis of the knee.

Development of 400 kV Oil-filled Power Cable and Joints Insulated with Polypropylene Laminated Paper (400 kV급 반합성지 전력케이블 및 접속함 개발)

  • Youn, B.H.;Kim, D.W.;Kim, J.N.;Kim, Seong-Yun;Lee, S.J.;Kim, J.S.;Shin, H.Y.;Lee, I.H.;Lim, C.H.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.155-157
    • /
    • 2006
  • 송전전압이 점차 초고압화되면서 절연체의 유전특성을 개선하여 송전용량을 향상시키고, 절연내력을 높여 케이블 외경을 저감시키려는 시도에 따라 우수한 유전특성 및 절연내력을 갖는 폴리머 절연층과 기계적 특성, 절연유와의 적합성이 우수한 크라프트지의 장점을 혼합시킨 반합성지가 개발되어 전력케이블의 주절연재료로 사용되고 있다. 본 논문은 LS전선이 국내최초로 개발한 400 kV급 반합성지 전력케이블 및 접속함 개발과정 및 이와 관련된 요소기술에 대해 기술하였다. 송전시스템에서 요구되는 유전특성의 반합성지를 설계 제작하여, 기존 크라프트 절연지 대비 유전손실은 50% 수준, 절연내력은 125%이상의 반합성지를 개발하였고, 반합성지 고유의 특성인 팽윤율을 조절하여 케이블을 제조하였다. 반합성지 절연 케이블에 필요한 접속함에서는 보강절연재로 케이블과 동일한 반합성지를 사용하여 전체적인 3기를 감소시키고, 열저항성을 줄이고자 노력하였다. 또한, 접속함 조립공정에 필요한 저온연공법을 개발하여 반합성지에 열적 스트레스를 최소화하였다. 상기 관련기술의 개발 결과로, IEC 60141, AEIC CS2-97 및 NGTS 3.5.1에 근거하여 400 kV급 반합성지 OF 케이블 및 접속함에 대해 국제 공인기관인 KEMA의부터 Type Test을 인증받았다.

  • PDF

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

Laboratory Markers Indicating Gastrointestinal Involvement of Henoch-Schönlein Purpura in Children

  • Hong, Jeana;Yang, Hye Ran
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Purpose: To determine clinically useful biochemical markers reflecting disease activity and/or gastrointestinal (GI) tract involvement in Henoch-$Sch{\ddot{o}}nlein$ purpura (HSP). Methods: A total of 185 children with HSP and 130 controls were included. Laboratory data indicating inflammation, standard coagulation, and activated coagulation were analyzed for the HSP patients, including measurements of the hemoglobin level, white blood cell (WBC) count, absolute neutrophil count (ANC), platelet count, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, prothrombin time, activated partial thromboplastin time, and fibrinogen, D-dimer, and fibrin degradation product (FDP) levels. The clinical scores of the skin, joints, abdomen, and kidneys were assessed during the acute and convalescence phases of HSP. Results: The WBC count, ANC, ESR, and CRP, fibrinogen, D-dimer, and FDP levels were significantly higher in the acute phase compared with the convalescent phase of HSP (p<0.05). The total clinical scores were more strongly correlated with the D-dimer (r=0.371, p<0.001) and FDP (r=0.369, p<0.001) levels than with inflammatory markers, such as the WBC count (r=0.241, p=0.001), ANC (r=0.261, p<0.001), and CRP (r=0.260, p<0.001) levels. The patients with GI symptoms had significantly higher ANC (median [interquartile range], 7,138.0 [4,446.4-9,470.0] vs. 5,534.1 [3,263.0-8,153.5], p<0.05) and CRP (0.49 [0.15-1.38] vs. 0.23 [0.01-0.67], p<0.05), D-dimer (2.63 [1.20-4.09] vs. 1.75 [0.62-3.39]), and FDP (7.10 [0.01-13.65] vs. 0.10 [0.01-7.90], p<0.05) levels than those without GI symptoms. Conclusion: D-dimer and FDPs are more strongly associated with disease activity and more consistently reflect GI involvement than inflammatory markers during the acute phase of HSP.

Strength Performance Evaluation of Threaded Nail Joints of Wooden Retaining Wall Using Pitch Pine (Pinus rigida Miller) Square Timber (리기다 소나무 정각재를 사용한 목재옹벽의 직결나사못 접합부 내력 성능 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • A connection was made between a single stretcher and 2 headers with 2 threaded nails (Type-A), and another one between 2 stretchers and 2 headers with 4 threaded nails (Type-B) to use as specimens. Type-C was the stretchers that are connected with 2 threaded nails by half lap joint at end-distance 5D to reinforce Type-B, Type-C1 the stretchers that are connected by half lap joint at end-distance 10D, and Type-C2 with 3 threaded nails at end-distance 10D. Compressive shear strength of Type-C, the supplementation of Type-B, was decreased by 30%, compared with that of Type-B. Those of Type-B and Type-C1 that used longer end-distance than Type-C were about the same, and that of Type-C2 connected with 3 threaded nails was 1.28-times stronger than that of Type-C1. Connection of the retaining wall using existing square timber has a problem between long and short stretchers and 2 headers. So it was investigated in the experiment to replace it. Therefore, if Type-B is replaced with Type-C2 in constructing the retaining wall, the crack and the rupture of timber caused by threaded nail as well as construction period can be reduced, and also it can be expected to increase their own strength.

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

Discharge characteristics of the Seodo Mulgol Spring, Dokdo (독도 서도 물골 지하수의 유출특성)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Song, Won-Kyong;Hwan, Jae-Hong;Choo, Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • The discharge characteristics of the Seodo Mulgol Spring-the only groundwater-producing area in Dokdo-were evaluated by measurements of discharge rate and electrical conductivity (EC) on five occasions. The Seodo Mulgol Spring is fed by rainfall in upstream areas of the Mulgol cave, and the rainwater of the area moves down along cooling joints developed in trachyandesite II and trachyte, finally discharging at the Mulgol cave. The discharge rate of the Seodo Mulgol Spring varied from 1.12 to 7.02 $m^3/d$ during the study period and EC varied from 2,650 to 3,390 ${\mu}S/cm$, showing a sharp increase during heavy rainfall. The observed variations in discharge rate and EC at the Seodo Mulgol Spring are attributed to the relatively short distance between the recharge area and the Mulgol cave, and to the rapid movement of groundwater through columnar joints developed in trachyandesite II and trachyte. Additional discharge measurements, combined with precise rainfall data, are required at Dokdo to elucidate the discharge characteristics of the Seodo Mulgol Spring.

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.