• Title/Summary/Keyword: 2D Imaging

Search Result 1,176, Processing Time 0.033 seconds

Evaluation of 2D Shear Wave Velocity Imaging of Subground Using HWAW Method (HWAW 기법을 이용한 지반의 2차원 전단파 속도 평가)

  • Kim, Jong-Tae;Park, Hyung-Choon;Bang, Eun-Seok;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • Two-dimensional imaging of $V_s$ profile becomes more important in Korea because of the large horizontal variation of soil stiffness. To obtain a shear-wave velocity profile in geotechnical practice, various seismic nondestructive investigation methods are being frequently used. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to the determination of $V_s$ profile to overcome some of weaknesses in the existing surface wave methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform has been developed to determine phase and group velocities of waves. Field testing of this method is relatively simple and fast because one experimental setup which consists of one pair of receivers is needed to determine $V_s$ profile of site. The proposed method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise, and uses single array inversion which considers receiver locations. Field tests were performed in 2 sites in order to evaluate accuracy of test method and estimate the applicability of 2-D imaging by HWAW method. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

Comparative Study between ZOOMit and Conventional Intravoxel Incoherent Motion MRI for Assessing Parotid Gland Abnormalities in Patients with Early- or Mid-Stage Sjögren's Syndrome

  • Qing-Qing Zhou;Wei Zhang;Yu-Sheng Yu;Hong-Yan Li;Liang Wei;Xue-Song Li;Zhen-Zhen He;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.455-465
    • /
    • 2022
  • Objective: To compare the reproducibility and performance of quantitative metrics between ZOOMit and conventional intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) in the diagnosis of early- and mid-stage Sjögren's syndrome (SS). Materials and Methods: Twenty-two patients (mean age ± standard deviation, 52.0 ± 10.8 years; male:female, 2:20) with early- or mid-stage SS and 20 healthy controls (46.9 ± 14.6 years; male:female, 7:13) were prospectively enrolled in our study. ZOOMit IVIM and conventional IVIM MRI were performed simultaneously in all individuals using a 3T scanner. Quantitative IVIM parameters - including tissue diffusivity (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) - inter- and intra-observer reproducibility in measuring these parameters, and their ability to distinguish patients with SS from healthy individuals were assessed and compared between ZOOMit IVIM and conventional IVIM methods, appropriately. MR gland nodular grade (MRG) was also examined. Results: Inter- and intra-observer reproducibility was better with ZOOMit imaging than with conventional IVIM imaging (ZOOMit vs. conventional, intraclass correlation coefficient of 0.897-0.941 vs. 0.667-0.782 for inter-observer reproducibility and 0.891-0.968 vs. 0.814-0.853 for intra-observer reproducibility). Significant differences in ZOOMit f, ZOOMit D*, D*, conventional D*, and MRG between patients with SS and healthy individuals (all p < 0.05) were observed. ZOOMit D* outperformed conventional D* in diagnosing early- and mid-stage SS (area under receiver operating curve, 0.867 and 0.658, respectively; p = 0.002). The combination of ZOOMit D*, MRG, and ZOOMit f as a new diagnostic index for SS, increased diagnostic area under the curve to 0.961, which was higher than that of any single parameter (all p < 0.01). Conclusion: Considering its better reproducibility and performance, ZOOMit IVIM may be preferred over conventional IVIM MRI, and may subsequently improve the ability to diagnose early- and mid-stage SS.

Reflection-type Three-dimensional Screen using Retroreflector

  • Song, Byoungsub;Choi, Sungwon;Sung, Hyunsik;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.225-229
    • /
    • 2014
  • A reflection-type three-dimensional (3D) screen using retroreflector is proposed to improve the visibility of a projected 3D image while keeping its perspective. For the projection-type 2D display, the diffuser is used to represent the 2D scene, overcoming the limitation of the aperture of the projection lens set. If the diffuser is adopted for the projected 3D image, only 2D images sectioned and blurred should be displayed on the screen. The proposed screen can make the 3D image with the aperture limitation visible to be applied to the 3D image projection systems. The feasibility of the proposed screen is verified by experiments.

A Novel Modeling Method for Manufacturing Hearing Aid Using 3D Medical Images (3차원 의료영상을 이용한 보청기 제작의 새로운 모델링 방법)

  • Kim, Hyeong-Gyun
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.257-262
    • /
    • 2016
  • This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, and the modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Comparison of mastoid air cell volume in patients with or without a pneumatized articular tubercle

  • Adisen, Mehmet Zahit;Aydogdu, Merve
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose: The aim of this study was to compare mastoid air cell volumes in patients with or without a pneumatized articular tubercle (PAT) on cone-beam computed tomography (CBCT) images. Materials and Methods: The CBCT images of 224 patients were retrospectively analyzed for the presence of PAT. The Digital Imaging and Communications in Medicine data of 30 patients with PAT and 30 individuals without PAT were transferred to 3D Doctor Software. Mastoid air cell volumes were measured using semi-automatic segmentation on axial sections. Data were analyzed using SPSS version 20.0. Results: The patients with PAT and those without PAT had a mean mastoid volume of 6.31±2.86 cm3 and 3.25±1.99 cm3, respectively. There were statistically significant differences in mastoid air cell volumes between patients with and without PAT regardless of sex and mastoid air cell side (P<0.05). Conclusion: The detection of PAT on routine dental radiographic examinations might be a potential prognostic factor that could be used to detect extensive pneumatization in the temporal bone. Clinicians should be aware that there may be widespread pneumatization of mastoid air cells in patients in whom PAT is detected. Advanced imaging should be performed in these cases, and possible complications due to surgical interventions should be considered.

Rotating slit X-ray backscatter imaging

  • Krzysztof Kacperski;Jan Klimaszewski;Tymoteusz Kosinski;Slawomir Wronka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4247-4253
    • /
    • 2024
  • We propose a new method of X-ray backscatter imaging which is a significant development of the well known flying spot approach. Instead of sweeping the imaged object by pencil X-ray beam, and recording the amplitude of backscattered radiation in order to form the raster image, the object is irradiated with a fan beam of X-rays, forming a line on the imaging plane. By properly chosen motion of the collimating slit, a set of lines, which makes up a 2D sinogram of the original object, can be collected. The backscatter image can then be obtained using one of the tomographic reconstruction algorithms, such as the filtered backprojection, which is well known in computed tomography or nuclear medicine. The feasibility of the method has been demonstrated experimentally using a prototype scanner with an industrial X-ray source. The main advantage of our method is the essentially more efficient use of the available X-ray source beam, by illuminating the object with a substantially larger photon flux at each time point. As a result, the image can be obtained at much shorter acquisition time and/or at much lower source power.

Correlation between MR Image-Based Radiomics Features and Risk Scores Associated with Gene Expression Profiles in Breast Cancer (유방암에서 자기공명영상 근거 영상표현형과 유전자 발현 프로파일 근거 위험도의 관계)

  • Ga Ram Kim;You Jin Ku;Jun Ho Kim;Eun-Kyung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.632-643
    • /
    • 2020
  • Purpose To investigate the correlation between magnetic resonance (MR) image-based radiomics features and the genomic features of breast cancer by focusing on biomolecular intrinsic subtypes and gene expression profiles based on risk scores. Materials and Methods We used the publicly available datasets from the Cancer Genome Atlas and the Cancer Imaging Archive to extract the radiomics features of 122 breast cancers on MR images. Furthermore, PAM50 intrinsic subtypes were classified and their risk scores were determined from gene expression profiles. The relationship between radiomics features and biomolecular characteristics was analyzed. A penalized generalized regression analysis was performed to build prediction models. Results The PAM50 subtype demonstrated a statistically significant association with the maximum 2D diameter (p = 0.0189), degree of correlation (p = 0.0386), and inverse difference moment normalized (p = 0.0337). Among risk score systems, GGI and GENE70 shared 8 correlated radiomic features (p = 0.0008-0.0492) that were statistically significant. Although the maximum 2D diameter was most significantly correlated to both score systems (p = 0.0139, and p = 0.0008), the overall degree of correlation of the prediction models was weak with the highest correlation coefficient of GENE70 being 0.2171. Conclusion Maximum 2D diameter, degree of correlation, and inverse difference moment normalized demonstrated significant relationships with the PAM50 intrinsic subtypes along with gene expression profile-based risk scores such as GENE70, despite weak correlations.

Endoscopic Precise 3D Surface Profiler Based on Continuously Scanning Structured Illumination Microscopy

  • Park, Hyo Mi;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2018
  • We propose a precise 3D endoscopic technique for medical and industrial applications. As the 3D measuring principle, the continuously scanning structured illumination microscopy (CSSIM), which enables to obtain 3D sectional images by the synchronous axial scanning of the target with the lateral scanning of the sinusoidal pattern, is adopted. In order to reduce the size of the probe end, the illumination and detection paths of light are designed as coaxial and a coherent imaging fiber bundle is used for transferring the illumination pattern to the target and vice versa. We constructed and experimentally verified the proposed system with a gauge block specimen. As the result, it was confirmed that the 3D surface profile was successfully measured with $16.1{\mu}m$ repeatability for a gauge block specimen. In order to improve the contrast of the sinusoidal illumination pattern reflected off on the target, we used polarizing optical components and confirmed that the visibility of the pattern was suitable in CSSIM.