• Title/Summary/Keyword: 2D Grating Patterns

Search Result 5, Processing Time 0.025 seconds

Modal Characteristics of Grating-Assisted Directional Coupler with 2D Periodic Patterns (2D 주기적 패턴으로 구성된 격자 구조형 방향성 결합기의 모드 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • Longitudinal transmission-line modal theory is applied to analyze the guiding mode characteristics along 1D & 2D grating patterns of plasmonic grating-assisted directional couplers (P-GADC) based on silicon waveguide. By defining supermodes amenable to rigorous analytical solutions and interference between even and odd modes, the field distributions of TE modes for each grating patterns are evaluated. The numerical result reveals that the field distribution with maximum coupling efficiency occurs at P-GADC composed by square grating pattern. That is, it reveals at a minium gap condition of grating period $d_{min}=8.8{\mu}m$ different from conventional phase-matching condition of GADC.

A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes

  • Park, Yoon-Chang;Park, Chul-Geun;Ahn, Seong-Joon;Kang, Moon-Ho;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • In the non-contact 3-dimensional (3D) shape measurements, the fringe pattern projection method based on the phase-shifting technique has been considered very effective for its high speed and accuracy. The digital fringe projector in particular has great flexibility in generating fringe patterns since the patterns can be controlled easily by the computer program. In this work, we have developed a high-speed digital laser grating projection system using a laser diode and a polygon mirror, and evaluated its performance. It has been demonstrated that all the optical measurements required to find out the profile of a 3D object could be carried out within 31 ms, which confirmed the validity of our 3D measurement system. The result implies the more important fact that the speed in 3D measurement can be enhanced remarkably since, in our novel system, there is no device like a LCD or DMD whose response time limits the measurement speed.

Cryogenic Thermal Cycling Test on IGRINS cross-disperser VPH Grating

  • Jeong, Hyeon-Ju;Lim, Ju-Hee;Lee, Sung-Hoo;Deen, Casey;Pak, Soo-Jong;Yuk, In-Soo;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.156-156
    • /
    • 2011
  • VPH (Volume Phase Hologram) grating is one of the transmission gratings and is known as its remarkable efficiency (>90%). It has two different densities of gelatins causing interference patterns. The VPH grating is favored in many astronomical instruments these days and also IGRINS, which is up coming near infrared high-resolution spectroscope expected to see the first light next year, uses the VPH grating as its cross-disperser. The infrared astronomical instruments operate at cryogenic temperature (~100K) in order to cut down thermal noise and the optical components of IGIRNS will be operated at 130K. The VPH grating is sandwiched in between fused silica or glass and glued together using optical adhesive. IGRINS is expected to go through 50 times of thermal cycling in 10 years including the performance test and this research is to check whether the physical characteristic such as the adhesion or dichromatic gelatin does not break and change from the several cryogenic thermal cycling. The two identical test gratings provided from Kaiser Optical System, Inc. are used in this test. One VPH grating is cooled down to 100K for 2 hours with maximum dT/dt = 5 and warmed up to the room temperature and another grating is kept stored in the room temperature and used as a control sample. In order to check the change, we inspected the grating with eyes and checked its efficiency and transmission at the room temperature every 10 cycling. From the 40 times of cryogenic temperature cool down cycling, the VPH grating showed no signs of change within the error compared to the control sample. We concluded the VPH grating is durable through several cryogenic thermal cycling.

  • PDF

Optical Characteristics of the LGP with Nanometer-patterned Sizes on Its Both Surfaces (복합 나노미터 패턴 도광판의 광특성)

  • Hong, Chin-Soo;Kim, Chang-Kyo;Lee, Byoung-Wook;Kim, Kyoung-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.530-534
    • /
    • 2008
  • The LGP with nanometer structures resulted in enhancement of optical efficiency. Its fundamental mechanism is to recycle the polarized light via one round-trip through QWP(Quarter-wave Plate) but the maximum efficiency to reach with this method is limited up to 2. To get the larger efficiency than this a LGP with 1D PC(one-dimensional photonic crystal) nanometer-patterned on its top and bottom surfaces is suggested. For its optimum design the computer simulation is performed and suggests a grating that the spatial frequency between adjacent patterns is 500nm, its height 250nm, duty cycle 50%, and its cross section is rectangular. The angles of transmitted light are nearly the same as the results expected from the generalized Snell's law. Thus the Mathematica code, developed in this experiment, will be applied to designing the optimized LGP. The LGP with nanometer-patterened 1D PC LGP on its both surfaces shows the enhancement of transmitted intensity distribution up to 5.7 times.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.