• Title/Summary/Keyword: 2D FEM

Search Result 663, Processing Time 0.028 seconds

Characteristic Analysis of Spoke Type Permanent Magnet Generator Considering the Rotor Overhang (오버행을 고려한 Spoke Type 영구자석 발전기의 특성 해석)

  • Kim K. C.;Kim K. W.;Lee S. M.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.785-787
    • /
    • 2004
  • The purpose of this paper is characteristic analysis of permanent magnet generator for AVR power of brushless synchronous generator. However, the PMG has a spoke type rotor with overhang, so we perform the analysis considering overhang for the precise airgap flux density. In this paper, dynamic analysis model with 2D FEM considering overhang is proposed by use of 2D, 3D static FEM results. The proposed method is verified by the results of PMG load test.

  • PDF

2-D FEM ANALYSIS OF LONGITUDINAL MAGNETIC RECORDING MEDIA TAKING ACCOUNT OF HYSTERESIS MODEL

  • Seol, S.C.;Kang, T.;Shin, K.H.;Lee, T.D.;Park, G.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.631-635
    • /
    • 1995
  • Longitudinal magnetic recording process of thin film media was simulated by the 2-D finite element method (FEM). To describe precisely the hysteresis behavior of thin film media, scalar Preisach model was used. In this paper, we discussed the formation of bit patterns and importance of modeling of minor loops in high density recording. The effects of the media coercivity and film thickness on the remanent magnetization and transition shape were investigated.

  • PDF

Effects of a Simplified Mixture Nozzle Geometry on the Acoustic Field in an Aero Gas Turbine Combustor (항공용 가스터빈 연소기에서의 혼합기 노즐 형상의 단순화가 음향장 해석 결과에 미치는 영향)

  • Pyo, Yeongmin;Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • A 3D FEM (Finite Element Method) based Helmholtz solver has been commonly used to characterize fundamental acoustic behavior and investigate dynamic instability features in many combustion systems. In this approach, a geometrical simplification of the target system has been generally made in order to reduce computational time and cost because a real combustor and fuel nozzle have a very complicated flow passage. The feasibility of these simplifications is quantitatively investigated in a small aero gas turbine nozzle in term of acoustic characteristics. It is found that the simplification in a nozzle geometry during the 3D FEM analysis process has no great influence on the acoustic modeling results, while the calculation complexity can be improved for a similar modeling accuracy.

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

2-D Forward Modeling on an Explosion Data in Korea (한반도의 폭파자료에 대한 2-D 수치 모델링 연구)

  • Kang, Ik-Bum;Cho, Kwang-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-139
    • /
    • 2007
  • To enhance capability on discerning local and regional seismic phases, such as, Pn, Pg, Sn, Rg, etc, within the crust, 2-D numerical forward modeling will be applied to the data obtained from local seismic stations by simulating almost all waves including not only body wave but also surface wave generated without having to explicitly include them under consideration of Q factor. In this study, after getting rid of instrumental response by deconvolution, pseudo-spectral method instead of relying on typical numerical methods, such as, FEM(Finite Element Method) and FDM(Finite Difference Method), will be implemented for 2-D numerical forward modeling by considering velocities of P-wave and S-wave, density, and Q factors. Ultimately, the Power of reaching the enhanced capability on discerning local and regional seismic phases will make it easier for us to identify the seismic source, whether it is originated from man-made explosion or pure earthquake.

  • PDF

Presentation of a Novel E-Core Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method

  • Fu, Dong-Shan;Xu, Yan-Liang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1963-1969
    • /
    • 2017
  • In order to overcome the manufacturing difficulty of the transverse-flux permanent magnet linear motor (TFPMLM) and enhance its performance much better, a novel TFPMLM with E-core and 3 dimension (3D) magnetic structures is proposed in this paper. Firstly, its basic structure and operating principle are presented. Then the equivalent 2D configuration of the TFPMLM is transformed, so that the Schwarz-Christoffel (SC) mapping method can be used to analyze the motor. Furthermore, the air gap flux density distribution is solved by SC mapping method, based on which, the EMF waveform, no-load cogging force waveform and load force waveform are obtained. Finally, the prototyped TLPMLM is manufactured and the results are obtained from the experiment and 3D FEM, respectively, which are used to compare with those from SC mapping method.

The Study on the Characteristic Analysis of Controlled-PM LSM for Maglev Vehicle (제어-영구자석형 자기부상열차의 특성해석에 관한 연구)

  • Lee, Ju;Chun, Yon-Do;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.450-457
    • /
    • 1998
  • Abstract - Linear Synchronous Motor has a large airgap comparing with rotary-type motor and especially, Permanent Magnet Linear Synchronous Motor(PM-LSM) which uses permanent magnet as a magnetic field, has a very large effective magnet airgap owing to permanent magnet structure. Accordingly, in case of 2-D analysis of the motor, the analysis error becomes large because leakage flux by which normal direction of the analysis region can not be considered, In this paper, the characteristic of PM-LSM for Maglev vehicle is analyzed exactly by 3-D Finite Element Method(3-D FEM). As the result, the effect of lateral-direction airgap magnetic flux density distribution on the analysis precision has been investigated and the motor characteristics according to primary motor parameter have been also made clear quantitatively. The accuracy of 3-D FEM has been confirmed by comparing the calculated results with the experimental results.

  • PDF

Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method (유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석)

  • Won, Sung-Yean;Lee, Hyang-Beom;Shin, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

The Analysis on Vector Control Characteristics of IM Using Finite Element Method (FEM을 이용한 유도 전동기의 벡터제어 특성 해석 연구)

  • Im, D.H.;Kwon, B.I.;Lee, J.H.;Woo, K.I.;Kim, C.E.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.56-58
    • /
    • 1995
  • Dynamic characteristics of the vector controlled induction motor has been analysed using d-q equivalent circuit. However, for the design of the induction motor, the analysis of an accurate response characteristic are needed. In this paper, dynamic characteristic analysis method using 2-D Finite Element Method (FEM), which takes the motion equation of the rotor into account and considers the physical motion of the rotor by an automatic subdivision of mesh, are explained.

  • PDF

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.