• Title/Summary/Keyword: 2D FEM

Search Result 663, Processing Time 0.021 seconds

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine

  • Hong, Sin-Pyo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.785-794
    • /
    • 2017
  • This paper is concerned with the comparative numerical and experimental study on the natural behavior and the motion responses of a 1/75 moored scale model of a 2.5 MW spar-type floating offshore wind turbine subject to 1-D regular wave. Heave, pitch and surge motions and the mooring tensions are investigated and compared by numerical and experimental methods. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass and three mooring lines are pre-tensioned by means of linear springs. The numerical simulations are carried out by a coupled FEM-cable dynamics code, while the experiments are performed in a wave tank equipped with the specially-designed vision and data acquisition system. Using the both methods, the natural behavior and the motion responses in RAOs are compared and parametrically investigated to the fairlead position, the spring constant and the location of mass center of platform. It is confirmed, from the comparison, that both methods show a good agreement for all the test cases. And, it is observed that the mooring tension is influenced by all three parameters but the platform motion is dominated by the location of mass center. In addition, from the sensitivity analysis of RAOs, the coupling characteristic of platform motions and the sensitivities to the mooring parameters are investigated.

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

Static Structural Analysis on the Mechanical behavior of the KALIMER Fuel Assembly Duct

  • Kim, Kyung-Gun;Lee, Byoung-Oon;Woan Hwang;Kim, Young ll;Kim, Yong su
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.298-306
    • /
    • 2001
  • As fuel burnup proceeds, thermal gradients, differential swelling, and inter-assembly loading may induce assembly duct bowing. Since duct bowing affects the reactivity, such as long or short term power-reactivity-decrement variations, handling problem, caused by top end deflection of the bowed assembly duct, and the integrity of the assembly duct itself. Assembly duct bowing were first observed at EBR-ll in 1965, and then several designs of assembly ducts and core restraint system were used to accommodate this problem. In this study, NUBOW-2D KMOD was used to analyze the bowing behavior of the assembly duct under the KALIMER(Korea Advanced Liquid MEtal Reactor) core restraint system conditions. The mechanical behavior of assembly ducts related to several design parameters are evaluated. ACLP(Above Core Load Pad) positions, the gap distance between the ducts, and the gap distance between the duct and restraint ring were selected as the sensitivity parameter for the evaluation of duct deflection.

  • PDF

Finite Element Analysis and Experimental Confirmation of Warm Hydroforming Process (온간 하이드로포밍에 관한 유한요소해석 및 실험적 검증)

  • Kim, B.J.;Park, K.S.;Choi, K.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.277-280
    • /
    • 2006
  • The hydroformability of aluminum alloy sheets at elevated temperatures have been investigated in this study. It is necessary to analyze the variations of the mechanical properties that depend on the forming temperature and the heat conduction during warm hydroforming. Therefore, in this study a coupled simulation of plastic deformation and temperature distribution in the warm hydroforming process is performed and compared with experimental data. The multi-purpose code DEFORM-2D can handle this type of calculations but it takes high computation time if contact heat transfer between die, tube and pressure medium occurs. Experiments were conducted by high temperature tribometer(pin-on-disk) allowing measuring the friction coefficients of the aluminum alloys at several temperatures and these results are applied to the coupled simulation by which the optimal process parameters such as internal pressure and preset temperature on hydroformability can be determined. The comparison of the FE analysis with the experimental results has shown that hydroformability given by bulge height, and temperature distribution of the tube specimen make a little difference with the FE results but the trend predicted by simulation agrees well with experiments.

  • PDF

A study on the formability in warm hydroforming of Al 6061 seamless tube (온간액압성형공정에서 Al 6061 튜브의 소성변형특성에 관한 연구)

  • Yi, H.K.;Lee, Y.K.;Lee, J.H.;Sohn, S.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.318-321
    • /
    • 2006
  • In this strudy, the free-bulge test and FE analysis have been used to define the fracture criteria based on the cockroft and Latham's criterion in warm hydroforming of Al 6061 tube. Full annealing and T6 treatment for heat treatment of Al 6061 tube ware used in this study. As-extruded, full annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed between room temperature and $200^{\circ}C$. And measured flow stress was used to simulate the warm hydroforming. A commercial FEM code, DEFORM-$2D^{TM}$, was used to calculate the damage value. A forming limit based ductile fracture criteria has been proposed by the results of experimental and FE analysis. The calculated values for fracture criteria will be efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

Measurement and Numerical Analysis of AC Loss in the HTS Pancake Coil and the HTS Solenid Coil (고온초전도 팬케이크 코일과 솔레노이드 코일의 교류손실 측정 및 수치해석)

  • Park Myung-Jin;Lee Sang-Soo;Lee Seung-Wook;Cha Guee-Soo;Lee Ji-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.732-738
    • /
    • 2004
  • In this paper, we constructed 13 turns pancake coil and solenoid coil with HTS tape and measured AC losses of the pancake coil. The critical current of the pancake coil and the solenoid coil were 80A and 109A, respectively. To compare measured AC losses of the two coils, we carried out numerical analysis using 2-D FEM program for manufactured coils. This paper presents current density distribution, flux density distribution and AC losses of the pancake coil and the solenoid. As a result, we obtained that current density distribution was closely related to the orientation of magnetic field and distribution of AC losses were also closely related to the perpendicular component of flux density distribution in coil. The calculated AC losses of the two coils showed good agreement with measured AC losses and AC losses of the pancake coil was about 9 times bigger than that of the solenoid coil under the same turns and length.

Asymmetric Creep Behavior of Ceramics (세라믹의 비대칭 크리프 거동)

  • Lim, H.J.;Jung, J.W.;Han, D.B.;Kim, K.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3105-3112
    • /
    • 1996
  • Asymmetric creep behaviors of ceramics under high temperature were investigated. Based on the Norton's power-low creep equation, multidirectional creep equations were proposed for general geometric loading conditions. The proposed equations were implemented into finite element program (ABAQUS) to simulate creep behaviors of ceramics in complicated loading conditions. The calculated results were compared with experimental data for uniaxial compression of Si-SiC C-ring and flexure of Si-SiC and $Al_2O_3$ in the literature. The finite element results agreed well with experimental data when the principal stresses are smaller than the threshold stress for creep damage. A good agreement was also obtained for damage zone in Si-SiC bending creep specimen compared with experimental data.

Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM (유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향)

  • Noh, Hak Gon;Park, Hyeong Gyu;Song, Woo Jin;Kang, Beom Soo;Kim, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.