• 제목/요약/키워드: 2D FEM

검색결과 670건 처리시간 0.031초

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

B-H Loop Measurement of a High Tensile Steel Plate (사각판재형 강재의 자기특성측정)

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Kim, Hwi-Seok;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of the Korean Magnetics Society
    • /
    • 제20권3호
    • /
    • pp.94-99
    • /
    • 2010
  • Minor B-H loop measurement for a rectangular high tensile steel was obtained by using Labview. A ferrite cores of high permeance with primary and secondary windings on the steel plate were used to form a closed loop of magnetic flux. To compensate errors due to an extremely small gap between a pair of ferrite core, and between the ferrite core and the rectangular high tensile steel, quadratic function of least square method was used. Also a 3D FEM magnetic analysis tool was used to measure H and B of the steel. B-H loop of the high tensile steel plate can be measured up to 520 A/m of a magnetic field and 0.15 T of a magnetic flux density.

Finite Element Analysis on Polyethylene Gas Pipes under External Loadings (폴리에틸렌 가스배관의 외부 하중에 대한 유한요소 해석)

  • Kil, Seoog-Hee;Park, Kyo-Shik;Kim, Ji-Yoon
    • Journal of Energy Engineering
    • /
    • 제17권4호
    • /
    • pp.204-211
    • /
    • 2008
  • Polyethylene(PE) pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studied the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes were calculated according to the loading condition such as pipe types(pipe diameter $50{\sim}400mm$), burial depths($0.6{\sim}1.2m$) and internal pressures($0.4{\sim}4bar$). As a result, it was founded the effect and relation with each of loading conditions under the buried condition.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

A study on the vibration of 2-phase HB type Linear Stepping Motor (2상 HB형 선형 STEPPING 전동기의 진동해석에 관한 연구)

  • Oh, H.S.;Jung, E.N.;Sim, S.H.;Lim, Y.H.;Lee, S.K.;Shim, J.S.;Shim, N.S.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.852-854
    • /
    • 2001
  • In this paper, the vibration characteristics of a 2-phase Hybrid type Linear Stepping Motor(HLSM) are analyzed using the ACSL. A magnetic equivalent circuit is based on the structure of the HLSM, and then the electric equivalent circuit of the HLSM is derived by solving equations for the magnetic equivalent circuit. A normal force is calculated using FEM(Flux2D). And the vibration characteristics(Continuous vibration) of the HLSM are simulated by the ACSL with the voltage equations, the thrust equation, the normal force equation and the kinetic equation.

  • PDF

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour;Masoud Ajri;Mehrdad Ekhtiari
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.211-225
    • /
    • 2024
  • Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제16권2호
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.

A FEM study about the initial stress distribution on canine altered by the application point of preangulated TMA T-loop spring (Preangulated TMA T-loop spring의 적용 위치 변화에 따른 견치의 초기 응력 분포에 대한 유한 요소법적 연구)

  • Kim, Jung-Min;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • 제29권5호
    • /
    • pp.521-534
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution on canine altered by the application point of preangulated T-loop spring. For this study, the finite element models of upper left canine, upper left second premolar and upper left first molar were made. Also, the finite element models of $0.017{\times}0.025$ inch preangulated, preactivated T-loop spring and $0.018{\times}0.025$ inch stainless steel wire were made. Three types of T-loop spring were made . the middle of activated T-loop is positioned in accordance with the middle position of distance of bracket position of both the canine and first molar, 2mm anterior, 2mm posterior. We compared the forces and the distribution of stress that were generated by the difference of position of T-loop spring. The results were as follows. 1. All of the 3 types of T-loop spring showed the similar retraction forces. 2. All showed the similar amount & pattern of stress distribution. 3. The centers of rotation of canine in 3 types of T-loop spring were same and were positioned between C and D plane. 4. The canine showed the intrusive force by 2mm anterior positioned T-loop spring, but the extrusive force by 2mm posterior positioned T-loop suing. Neverthless, because of the small amount of the forces, the effect of vertical force was not significant.

  • PDF

A Study on Stability Evaluation of the Nail-Anchor Mixed Support System

  • Kim, Hong-Taek;Cho, Yong-Kwon;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • 제15권3호
    • /
    • pp.41-70
    • /
    • 1999
  • The benefits of utilizing internal reinforced members, such as soil nails and ground anchors, in maintaining stable excavations and slopes have been known among geotechnical engineers to be very effective. Occasionally, however, both soil nails and ground anchors are simultaneously used in one excavation site. In the present study, a method of limit equilibrium stability analysis of the excavation zone reinforced with the vertically or horizontally mixed nail-anchor system is proposed to evaluate the global safety factor with respect to a sliding failure. The postulated failure wedges are determined based on the results of the $FLAC^{2D}\; 및\; FLAC^{3D}$ program analyses. This study also deals with a determination of the required thickness of the shotcrete facing. An excessive facing thickness may be required due to both the stress concentration and the relative displacement at the interface zone between the soil nailing system and the ground anchor system. A simple finite element method of analysis is presented to estimate the corresponding relative displacement at the interface zone between two different support systems. As an efficient resolution to reduce the facing thickness, the modified bearing plate system is also proposed. Finally with various analysis related to the effects of design parameters, the predicted displacements are compared with the results of the $FLAC^{2D}$ program analyses.

  • PDF

A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging (냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구)

  • 이영선;이대근;이정환
    • Transactions of Materials Processing
    • /
    • 제11권2호
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.