• Title/Summary/Keyword: 2D Descriptors

Search Result 50, Processing Time 0.035 seconds

Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach

  • Joung, Jong-Young;Kim, Hyoung-Joon;Kim, Hwan-Mook;Ahn, Soon-Kil;Nam, Ky-Youb;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1123-1127
    • /
    • 2012
  • P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR). MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation. Using molecular descriptors that we can interpret their own meaning, we have established two models for prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the number of compounds required to be run in the P-gp efflux assay.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Exploring Level Descriptors of Geometrical Thinking

  • Srichompoo, Somkuan;Inprasitha, Maitree;Sangaroon, Kiat
    • Research in Mathematical Education
    • /
    • v.15 no.1
    • /
    • pp.81-91
    • /
    • 2011
  • The aim of this study was to explore the grade 1-3 students' geometrical thinking level descriptors based on van Hiele level descriptors. The data were collected through collection of geometric curriculum materials such as indicators and learning standards in Basic Education Core Curriculum and mathematics textbook for grades 1-3. The findings were found that 1) Inconsistency between descriptors appeared on mathematics curriculum and Thai mathematics textbooks. 2) Using topics on textbooks as criterion for exploring 5 of 7 descriptors appeared on Thai mathematics textbook indicated geometrical thinking levels based on van Hiele's model merely level 0 (Visualization) across textbooks for grades 1-3.

A Study of the Influence of Choice of Record Fields on Retrieval Performance in the Bibliographic Database (서지 데이터베이스에서의 레코드 필드 선택이 검색 성능에 미치는 영향에 관한 연구)

  • Heesop Kim
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.35 no.4
    • /
    • pp.97-122
    • /
    • 2001
  • This empirical study investigated the effect of choice of record field(s) upon which to search on retrieval performance for a large operational bibliographic database. The query terms used in the study were identified algorithmically from each target set in four different ways: (1) controlled terms derived from index term frequency weights, (2) uncontrolled terms derived from index term frequency weights. (3) controlled terms derived from inverse document frequency weights, and (4) uncontrolled terms based on universe document frequency weights. Su potable choices of record field were recognised. Using INSPEC terminology, these were the fields: (1) Abstract. (2) 'Anywhere'(i.e., ail fields). (3) Descriptors. (4) Identifiers, (5) 'Subject'(i.e., 'Descriptors' plus Identifiers'). and (6) Title. The study was undertaken in an operational web-based IR environment using the INSPEC bibliographic database. The retrieval performances were evaluated using D measure (bivariate in Recall and Precision). The main findings were that: (1) there exist significant differences in search performance arising from choice of field, using 'mean performance measure' as the criterion statistic; (2) the rankings of field-choices for each of these performance measures is sensitive to the choice of query : and (3) the optimal choice of field for the D-measure is Title.

  • PDF

WebChemDB: An Integrated Chemical Database Retrieval System

  • Hou, Bo-Kyeng;Moon, Eun-Joung;Moon, Sung-Chul;Kim, Hae-Jin
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 2009
  • WebChemDB is an integrated chemical database retrieval system that provides access to over 8 million publicly available chemical structures, including related information on their biological activities and direct links to other public chemical resources, such as PubChem, ChEBI, and DrugBank. The data are publicly available over the web, using two-dimensional (2D) and three-dimensional (3D) structure retrieval systems with various filters and molecular descriptors. The web services API also provides researchers with functionalities to programmatically manipulate, search, and analyze the data.

Convolutional Neural Network Based Multi-feature Fusion for Non-rigid 3D Model Retrieval

  • Zeng, Hui;Liu, Yanrong;Li, Siqi;Che, JianYong;Wang, Xiuqing
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.176-190
    • /
    • 2018
  • This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.

Human Action Recognition Via Multi-modality Information

  • Gao, Zan;Song, Jian-Ming;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.739-748
    • /
    • 2014
  • In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.

Classification of Piperazinylalkylisoxazole Library by Recursive Partitioning

  • Kim, Hye-Jung;Park, Woo-Kyu;Cho, Yong-Seo;No, Kyoung-Tai;Koh, Hun-Yeong;Choo, Hyun-Ah;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2008
  • A piperazinylalkylisoxazole library containing 86 compounds was constructed and evaluated for the binding affinities to dopamine (D3) and serotonin (5-HT2A/2C) receptor to develop antipsychotics. Dopamine antagonists (DA) showing selectivity for D3 receptor over the D2 receptor, serotonin antagonists (SA), and serotonin-dopamine dual antagonists (SDA) were identified based on their binding affinity and selectivity. The analogues were divided into three groups of 7 DAs (D3), 33 SAs (5-HT2A/2C), and 46 SDAs (D3 and 5-HT2A/2C). A classification model was generated for identifying structural characteristics of those antagonists with different affinity profiles. On the basis of the results from our previous study, we conducted the generation of the decision trees by the recursive-partitioning (RP) method using Cerius2 2D descriptors, and identified and interpreted the descriptors that discriminate in-house antipsychotic compounds.

Multi-Shape Retrieval Using Multi Curvature-Scale Space Descriptor (다중 곡률-단계 공간 기술자를 이용한 다중형상 검색)

  • Park, Sang Hyun;Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.962-965
    • /
    • 2008
  • 2-D shape descriptors, which are vectors representing characteristics of shapes, enable comparison and classification of shapes and are mainly applied to image and 3-D model retrieval. Existing descriptors have limitations that they only describe shapes of single closed contours or lack in precision, making it difficult to be applied to shapes with multiple contours. Therefore, in this paper, we propose a new shape descriptor called Multi-Curvature-Scale Space that can be applied to shapes with multiple contours. Specifically, we represent the topology of the sub-contours in the multi-contour along with Curvature-Scale Space descriptors to represent the shapes of each sub-contours. Also, by allowing the weight of each component to be controlled when computing the distance between descriptors the weight, we deal with ambiguities in measuring similarity between shapes. Results of various experiments that prove the effectiveness of proposed descriptor are presented.