• Title/Summary/Keyword: 2D Convolutional Neural Network

Search Result 99, Processing Time 0.023 seconds

Development of Combined Architecture of Multiple Deep Convolutional Neural Networks for Improving Video Face Identification (비디오 얼굴 식별 성능개선을 위한 다중 심층합성곱신경망 결합 구조 개발)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.655-664
    • /
    • 2019
  • In this paper, we propose a novel way of combining multiple deep convolutional neural network (DCNN) architectures which work well for accurate video face identification by adopting a serial combination of 3D and 2D DCNNs. The proposed method first divides an input video sequence (to be recognized) into a number of sub-video sequences. The resulting sub-video sequences are used as input to the 3D DCNN so as to obtain the class-confidence scores for a given input video sequence by considering both temporal and spatial face feature characteristics of input video sequence. The class-confidence scores obtained from corresponding sub-video sequences is combined by forming our proposed class-confidence matrix. The resulting class-confidence matrix is then used as an input for learning 2D DCNN learning which is serially linked to 3D DCNN. Finally, fine-tuned, serially combined DCNN framework is applied for recognizing the identity present in a given test video sequence. To verify the effectiveness of our proposed method, extensive and comparative experiments have been conducted to evaluate our method on COX face databases with their standard face identification protocols. Experimental results showed that our method can achieve better or comparable identification rate compared to other state-of-the-art video FR methods.

Bird sounds classification by combining PNCC and robust Mel-log filter bank features (PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류)

  • Badi, Alzahra;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • In this paper, combining features is proposed as a way to enhance the classification accuracy of sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types of bird species in their natural environment. To evaluate the performance of the combined features under noisy environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Electrical Arc Detection using Convolutional Neural Network (합성곱 신경망을 이용한 전기 아크 신호 검출)

  • Lee, Sangik;Kang, Seokwoo;Kim, Taewon;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.569-575
    • /
    • 2020
  • The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet, and statistical features have been used, additional steps such as transformation and feature extraction are required. On the contrary, deep learning models directly use the raw data without any feature extraction processes. Therefore, the usage of time-domain data is preferred, but the performance is not satisfactory. To solve this problem, subsequent 1-D signals are transformed into 2-D data that can feed into a convolutional neural network (CNN). Experiments validated that CNN model outperforms deep neural network (DNN) by the classification accuracy of 8.6%. In addition, data augmentation is utilized, resulting in the accuracy improvement by 14%.

Prediction of Residual Resistance Coefficient of Ships using Convolutional Neural Network (합성곱 신경망을 이용한 선박의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Hwang, Seung-Hyun;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.243-250
    • /
    • 2022
  • In the design stage of hull forms, a fast prediction method of resistance performance is needed. In these days, large test matrix of candidate hull forms is tested using Computational Fluid Dynamics (CFD) in order to choose the best hull form before the model test. This process requires large computing times and resources. If there is a fast and reliable prediction method for hull form performance, it can be used as the first filter before applying CFD. In this paper, we suggest the offset-based performance prediction method. The hull form geometry information is applied in the form of 2D offset (non-dimensionalized by breadth and draft), and it is studied using Convolutional Neural Network (CNN) and adapted to the model test results (Residual Resistance Coefficient; CR). Some additional variables which are not included in the offset data such as main dimensions are merged with the offset data in the process. The present model shows better performance comparing with the simple regression models.

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.

S-PRESENT Cryptanalysis through Know-Plaintext Attack Based on Deep Learning (딥러닝 기반의 알려진 평문 공격을 통한 S-PRESENT 분석)

  • Se-jin Lim;Hyun-Ji Kim;Kyung-Bae Jang;Yea-jun Kang;Won-Woong Kim;Yu-Jin Yang;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.193-200
    • /
    • 2023
  • Cryptanalysis can be performed by various techniques such as known plaintext attack, differential attack, side-channel analysis, and the like. Recently, many studies have been conducted on cryptanalysis using deep learning. A known-plaintext attack is a technique that uses a known plaintext and ciphertext pair to find a key. In this paper, we use deep learning technology to perform a known-plaintext attack against S-PRESENT, a reduced version of the lightweight block cipher PRESENT. This paper is significant in that it is the first known-plaintext attack based on deep learning performed on a reduced lightweight block cipher. For cryptanalysis, MLP (Multi-Layer Perceptron) and 1D and 2D CNN(Convolutional Neural Network) models are used and optimized, and the performance of the three models is compared. It showed the highest performance in 2D convolutional neural networks, but it was possible to attack only up to some key spaces. From this, it can be seen that the known-plaintext attack through the MLP model and the convolutional neural network is limited in attackable key bits.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

MLCNN-COV: A multilabel convolutional neural network-based framework to identify negative COVID medicine responses from the chemical three-dimensional conformer

  • Pranab Das;Dilwar Hussain Mazumder
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.290-306
    • /
    • 2024
  • To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transferlearning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses.

Motion generation using Center of Mass (무게중심을 활용한 모션 생성 기술)

  • Park, Geuntae;Sohn, Chae Jun;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2020
  • When a character's pose changes, its center of mass(COM) also changes. The change of COM has distinctive patterns corresponding to various motion types like walking, running or sitting. Thus the motion type can be predicted by using COM movement. We propose a motion generator that uses character's center of mass information. This generator can generate various motions without annotated action type labels. Thus dataset for training and running can be generated full-automatically. Our neural network model takes the motion history of the character and its center of mass information as inputs and generates a full-body pose for the current frame, and is trained using simple Convolutional Neural Network(CNN) that performs 1D convolution to deal with time-series motion data.