• Title/Summary/Keyword: 2D/1D transport method

Search Result 107, Processing Time 0.023 seconds

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.

Effects of Phloretin, Cytochalasin B, and D-Fructose on 2-deoxy-D-Glucose Transport of the Glucose Transport System Present in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2006
  • The baculovirus expression system is a powerful method for producing large amounts of the human erythrocyte-type glucose transport protein, heterologously. Characterization of the expressed protein is expected to show its ability to transport sugars directly. To achieve this, it is a prerequisite to know the properties of the endogenous sugar transport system in Spodoptera frugiperda Clone 21 (Sf21) cells, which are commonly employed as a host permissive cell line to support the baculovirus replication. The Sf21 cells can grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transport system. However, unlike the human glucose transport protein that has a broad substrate and inhibitor specificity, very little is known about the nature of the endogenous sugar transport system in Sf21 cells. In order to characterize further the inhibitor recognition properties of the Sf21 cell transporter, the ability of phloretin, cytochalasin B and D-fructose to inhibit 2-deoxy-D-glucose (2dGlc) transport was examined by measuring inhibition constants $(K_i)$. The $K_i's$ for reversible inhibitors were determined from plots of uptake versus inhibitor concentration. The 2dGlc transport in the Sf21 cells was very potently inhibited by phloretin, the aglucone of phlorizin with a $K_i$ similar to the value of about $2{\mu}M$ reported for inhibition of glucose transport in human erythrocytes. However, the Sf21 cell transport system was found to differ from the human transport protein in being much less sensitive to inhibition by cytochalasin B (apparent $K_i$ approximately $10\;{\mu}M$). In contrast, It is reported that the inhibitor binds the human erythrocyte counterpart with a $K_d$ of approximately $0.12\;{\mu}M$. Interestingly, the Sf21 glucose transport system also appeared to have high affinity for D-fructose with a $K_i$ of approximately 5mM, contrasting the reported $K_m$ of the human erythrocyte transport protein for the ketose of 1.5M.

  • PDF

Transportation and kinetic analysis of Zn(II) ions via MDLM system containing D2EHPA as carrier

  • Erden, Kadriye Esen;Donat, Ramazan
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • In this study, a new method called as multi-dropped liquid membrane (MDLM) which is more practical and more effective than other liquid membrane techniques is applied for transport of Zn(II) has been studied. HCl as the stripping solution and D2EHPA dissolved in kerosene as the membrane solution, has been examined. The effects of stripping solution concentration, carrier concentration, temperature and pH in the feed phase on the transport of Zn(II) have also been investigated. As a result, the optimum transport conditions of Zn(II) were obtained, i.e., the concentration of HCl solution was 0.25 M, the concentration of D2EHPA was $8{\times}10^{-3}M$, and pH value in the donor phase was 5.00. Under the optimum conditions, the transport percentage of Zn(II) was up to >99% during the transport time of 80 min when the initial concentration of Zn(II) was $120mgL^{-1}$. The activation energy is calculated as $5.30kcalmol^{-1}$. The value of calculated activation energy indicates that the process is diffusionally controlled by Zn(II) ions. The experiments have demonstrated that D2EHPA derivative is a good carrier for Zn(II) transport through MDLM in the study.

Neutron Fluence Evaluation for Reactor Pressure Vessel Using 3D Discrete Ordinates Transport Code RAPTOR-M3G (3차원 수송계산 코드(RAPTOR-M3G)를 이용한 원자로 압력용기 중성자 조사량 평가)

  • Maeng, Young Jae;Lim, Mi Joung;Kim, Byoung Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • The Code of Federal Regulations, Title 10, Part 50, Appendix H requires surveillance program for reactor pressure vessel(RPV) that the peak neutron fluence at the end of the design life of the vessel will exceed $1.0E+17n/cm^2$ (E>1.0MeV). 2D/1D Synthesis method based on DORT 3.1 transport calculation code has been widely used to determine fast neutron(E>1.0MeV) fluence exposure to RPV in the beltline region. RAPTOR-M3G(RApid Parallel Transport Of Radiation-Multiple 3D Geometries) performing full 3D transport calculation was developed by Westinghouse and KRIST(Korea Reactor Integrity Surveillance Technology) and applied for the evaluations of In-Vessel and Ex-Vessel neutron dosimetry. The reaction rates from measurement and calculation were compared and the results show good agreements each other.

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong;Kim, Kyeongwon;Lemaire, Matthieu;Nguyen, Tung Dong Cao;Lee, Woonghee;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2670-2689
    • /
    • 2022
  • STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

A Separation of manganese (II) and cobalt (II) ions by D2EHPA/TBP-immobilized PolyHIPE membrane

  • Chen, Jyh-Herng;Mai, Le Thi Tuyet
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • The D2EHPA/TBP co-extractants immobilized PolyHIPE membrane can be used for the selective separation of Mn (II) from Co (II). By solvent-nonsolvent method, D2EHPA/TBP co-extractants can be effectively immobilized into PolyHIPE membrane. The pore structure of PolyHIPE membrane and the presence of TBP enhance the stability of immobilized co-extractants. The optimal operating conditions for the separation of Mn (II) and Co (II) are feeding phase at pH 5.5, sulfuric acid concentration in the stripping phase of about 50 g/L and stirring speed at 400 rpm. The D2EHPA/TBP co-extractants ratio of 5:1 shows synergetic effect on Mn/Co separation factor about 22.74. The removal rate and recovery rate of Mn (II) is about 98.4 and 97.1%, respectively, while for Co (II) the transport efficiency is insignificant. The kinetic study of Mn (II) transport shows that high initial flux, $J_f^o=80.1({\mu}mol/m^2s)$, and maxima stripping flux, $J_s^{max}=20.8({\mu}mol/m^2s)$, can be achieved with D2EHPA/TBP co-extractants immobilized PolyHIPE membrane. The stability and reusability study shows that the membrane can maintain a long term performance with high efficiency. High purity of Co (II) and Mn (II) can be recovered from the feeding phase and stripping phase, respectively.

An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis

  • Lin, Ching-Sheng;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2733-2742
    • /
    • 2020
  • This paper presents an assessment of applicability of the multigroup cross sections generated with Monte Carlo tools to the fast reactor analysis based on transport calculations. 33-group cross section sets were generated for simple one- (1-D) and two-dimensional (2-D) sodium-cooled fast reactor problems using the SERPENT code and applied to deterministic steady-state and depletion calculations. Relative to the reference continuous-energy SERPENT results, with the transport corrected P0 scattering cross section, the k-eff value was overestimated by 506 and 588 pcm for 1-D and 2-D problems, respectively, since anisotropic scattering is important in fast reactors. When the scattering order was increased to P5, the 1-D and 2-D problem errors were increased to 577 and 643 pcm, respectively. A sensitivity and uncertainty analysis with the PERSENT code indicated that these large k-eff errors cannot be attributed to the statistical uncertainties of cross sections and they are likely due to the approximate anisotropic scattering matrices determined by scalar flux weighting. The anisotropic scattering cross sections were alternatively generated using the MC2-3 code and merged with the SERPENT cross sections. The mixed cross section set consistently reduced the errors in k-eff, assembly powers, and nuclide densities. For example, in the 2-D calculation with P3 scattering order, the k-eff error was reduced from 634 pcm to -223 pcm. The maximum error in assembly power was reduced from 2.8% to 0.8% and the RMS error was reduced from 1.4% to 0.4%. The maximum error in the nuclide densities at the end of 12-month depletion that occurred in 237Np was reduced from 3.4% to 1.5%. The errors of the other nuclides are also reduced consistently, for example, from 1.1% to 0.1% for 235U, from 2.2% to 0.7% for 238Pu, and from 1.6% to 0.2% for 241Pu. These results indicate that the scalar flux weighted anisotropic scattering cross sections of SERPENT may not be adequate for application to fast reactors where anisotropic scattering is important.