• Title/Summary/Keyword: 26GHz

Search Result 351, Processing Time 0.026 seconds

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Design of W Band Frequency Synthesizer Using Frequency Tripler (주파수 3체배기를 이용한 W 밴드 주파수 합성기 설계)

  • Cho, Hyung-Jun;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.971-978
    • /
    • 2013
  • This work presents a W band frequency synthesizer which is composed of 26 GHz VCO, Phase Locked Loop and frequency tripler using 65 nm RF CMOS process. Frequency tuning range of 26 GHz VCO covers the band from 22.8~26.8 GHz and final output frequency of the tripler is from 74 to 75.6 GHz. The fabricated frequency synthesizer consumes 75.6 mW and its phase noise is -75 dBc/Hz at 1 MHz offset, -101 dBc/Hz 10 MHz offset respectively.

A Study of Wideband Method for the Millimeter-wave Planar Antenna (밀리미터파대 평면형 안테나의 광대역화 방안)

  • 이형수;설동범;이윤경;백락준;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.206-216
    • /
    • 2000
  • In this paper, the linear tapered slot(LTS) antenna and linear constant tapered slot(LCTS) antenna are optimized for millimeter-wave antenna by the finite difference time domain(FDTD) method and then fabricated and measured. The microstrip-to-slot transition is proposed with the widen $\lambda$/4 open stub as feeder for wide bandwidth of 16.5GHz($VSWR\leq2$). The results of the calculation and measurement, the bandwidth of LTS antanna is 8.3GHz(26.47%) and 7.1792GHz(22.4%) respectively. Also, the bandwidth of LCTS antenna is 8.1GHz(26.47%) and 6.3243GHz(20.43%) respectively.

  • PDF

Design and Fabrication of 26.4 GHz Local Oscillator for Satellite Payload (위성 탑재체용 26.4 GHz 국부발진기의 설계 및 제작)

  • Shin Dong-Hwan;Ryu Keun-Kwan;Chang Dong-Pil;Lee Moon-Que;Yom In-Bok;Oh Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.194-200
    • /
    • 2006
  • A 26.4 GHz phase locked oscillator(PLO) for communication satellite transponder is developed. The PLO consists of fundamental frequency generation module(FFGM) and frequency multiplication part(FMP). The signal of 26.4 GHz is generated through frequency tripling process of 8.8 GHz fundamental frequency. Phase locking technique using sampling phase detector(SPD) is adopted to design the FFGM. The MMIC tripler and amplifier are also designed for the reduction of the size and mass of FMP. The phase noise characteristics are exhibited as -96 dBc/Hz at 10 tHz offset frequency and -105 dBc/Hz at 100 kHz offset frequency, respectively, with the output power over 11 dBm. All performance parameters are complied with the design requirements.

Design of Low Noise Frequency Synthesizer for B-WLL RF Tranceiver (낮은 위상 잡음의 B-WLL 대역 주파수 합성기의 설계)

  • 송인찬;고원준;한동엽;황희용;윤상원;장익수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.959-968
    • /
    • 2000
  • In this paper, a low phase noise frequency synthesizer used to TX local oscillator in BWLL RF tranceiver is presented. The phase-locked stable 25GHz-band frequencies in BWLL TX LO are obtained by using 2 GHz baseband frequency synthesizer, sixth-harmonic frequency multiplier and frequency doubler at 12 GHz band frequency input. The 25 GHz band frequency synthesizer presented in this paper has 3-output frequencies at 24.92 GHz, 25.10 GHz, 25.26 GHz. At 24.92 GHz frequency the synthesizer has 0.44 dBm output power and shows -87.93 dBc/Hz(a 10 KHz), -109.54 dBc/Hz (a100 KHz) phase noise characteristics .

  • PDF

Design of 26GHz Variable-N Frequency Divider for RF PLL (RF PLL용 26GHz 가변 정수형 주파수분할기의 설계)

  • Kim, Ho-Gil;Chai, Sang-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.270-275
    • /
    • 2012
  • This paper describes design of a variable-N frequency synthesizer for RF PLL with $0.13{\mu}m$ silicon CMOS technology being used as an application of the UWB system like MBOA. To get good performance of speed and noise super dynamic circuits was used, and to get variable-N division ratio MOSFET switching circuits was used. Especially to solve narrow bandwidth problem of the dynamic circuits load resistance value of unit divider block was varied. Simulation results of the designed circuit shows very fast and wide operation characteristics as 5~26GHz frequency range.

Design and Fabrication of Multi-Band Antenna for WLAN and Sub-6GHz Band (WLAN 및 Sub-6GHz 대역을 위한 다중대역 안테나 설계 및 제작)

  • Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.845-852
    • /
    • 2024
  • In this paper, we propose mult-band antenna included Sub-6 GHz band for WLAN system. The proposed antenna has the fourth strip line and slot in the partial ground plane to obtain impedance matching. The total substrate size is 48.0 mm (W)×50.0 mm (L), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 26.0 mm (W2)×42.0 mm (L1+L2+4.0(L1+L2+4.0 mm+L8+L9) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 115 MHz (0.825 to 0.940 GHz) for 900 MHz band, 210.0 MHz (2.29 to 2.50 GHz) for 2.4 GHz band, 270.0 MHz (3.45 to 3.72 GHz) for 3.5 GHz band, and 930.0 MHz (4.95 to 5.88 GHz) for 5.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Fabrication and Measurement of a Compact Half-bowtie-shaped Meander Microstrip Patch Antenna for the 5-GHz Band (5-GHz 대역용 1/2 보우타이형 미앤더 마이크로스트립패치 안테나의 설계 및 제작)

  • An, Gyoo-Chul;Kim, Heung-Su;Lee, Sang-Mok;Yun, Chung-Han
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the characteristics of a half-bowtie-shaped meander-type antenna for the 5-GHz band. Its design is based on a modified meander line width and bowtie shape with coaxial feeding. Its maximum measured impedance bandwidth (-10 dB below) is approximately 1.055 GHz (5.01-6.065 GHz) or 19.05%. Radiation patterns at different frequencies are presented. The measured gain was 2.26-8.86 dBi.

  • PDF

Development of the High Performance 94 GHz Waveguide VCO (우수한 성능의 94 GHz 도파관 전압조정발진기의 개발)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1035-1039
    • /
    • 2012
  • In this paper, we developed a 94 GHz waveguide VCO(voltage controlled oscillator) using a GaAs-based Gunn diode and a varactor diode. The cavity is designed for fundamental mode at 47 GHz and operated at second harmonic of 94 GHz. Bias posts for diodes operate as LPF(low pass filter) and resonator. The fabricated waveguide VCO achieves an oscillation bandwidth of 760 MHz. Output power is from 12.61 to 15.26 dBm and phase noise is -101.13 dBc/Hz at 1 MHz offset frequency from the carrier.