• Title/Summary/Keyword: 25 Gb/s NRZ

Search Result 3, Processing Time 0.02 seconds

Eye margin characteristics of 10Gb/s signals to the variation of optical signal to noise ratio and dispersion compensation (10 Gb/s 신호의 광학적 신호대 잡음비와 색분산 보상에 따른 아이 마진 특성)

  • 이상수;한정희;이동호;주무정;김민규
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.169-173
    • /
    • 1999
  • We have experimentally investigated the eye margin characteristics of intensity modulated 10Gb/s NRZ signals in optically amplified systems depending on optical signal-to-noise ratio and chromatic dispersion. For the practical system application, the minimum optical signal-to-noise ratio was 25 dB. We utilized the negative chirped transmitter and a dispersion compensation fiber to compensate the chromatic dispersion in single mode fiber. We found the optimum eye opening and receiver sensitivity in case of the residual dispersion of 0~+935 ps/nm.

  • PDF

Electroabsorption modulator-integrated distributed Bragg reflector laser diode for C-band WDM-based networks

  • Oh-Kee Kwon;Chul-Wook Lee;Ki-Soo Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.163-170
    • /
    • 2023
  • We report an electroabsorption modulator (EAM)-integrated distributed Bragg reflector laser diode (DBR-LD) capable of supporting a high data rate and a wide wavelength tuning. The DBR-LD contains two tuning elements, plasma and heater tunings, both of which are implemented in the DBR section, which have blue-shift and red-shift in the Bragg wavelength through a current injection, respectively. The light created from the DBR-LD is intensity-modulated through the EAM voltage, which is integrated monolithically with the DBRLD using a butt-joint coupling method. The fabricated chip shows a threshold current of approximately 8 mA, tuning range of greater than 30 nm, and static extinction ratio of higher than 20 dB while maintaining a side mode suppression ratio of greater than 40 dB under a window of 1550 nm. To evaluate its modulation properties, the chip was bonded onto a mount including a radiofrequency line and a load resistor showing clear eye openings at data rates of 25 Gb/s nonreturn-to-zero and 50 Gb/s pulse amplitude modulation 4-level, respectively.

2.5 Gb/s transmission of a spectrum-sliced incoherent hight source with 0.92 nm bandwidth over 80 km of dispersion-shifted fiber

  • Shin, Sang-Yung;Han, Jung-Hee;Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.22-25
    • /
    • 1998
  • We present a spectrum broadening technique to improve the signal-to-noise ratio of spectrum sliced incoherent light sources using the fiber four-wave mixing effect which occurs in a nonlinear loop mirror located at the receiver. The initial transmission channel bandwidth of 0.92 nm was increased to 1.62 nm in the nonlinear loop mirror at the optical receiver, which enhances the signal-to-noise ratio to a desired value. Using this technique, we have demonstrated the transmission of a 2.5 Gb/s NRZ signal with the 0.92 nm bandwidth through a 80 km dispersion-shifted fiber. The measured transmission penalty was less than 0.2 dB at $1{\imes}10^{-10}$ BER.