• Title/Summary/Keyword: 23S rDNA genes

Search Result 35, Processing Time 0.028 seconds

Characterization of the Complete Mitochondrial Genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and Development of Molecular Markers for Differentiating Fish Tapeworms

  • Kim, Kyu-Heon;Jeon, Hyeong-Kyu;Kang, Seokha;Sultana, Tahera;Kim, Gil Jung;Eom, Keeseon S.;Park, Joong-Ki
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.379-390
    • /
    • 2007
  • We sequenced and characterized the complete mitochondrial genome of the Japanese fish tapeworm D. nihonkaiense. The genome is a circular-DNA molecule of 13607 bp (one nucleotide shorter than that of D. latum mtDNA) containing 12 protein-coding genes (lacking atp8), 22 tRNA genes and two rRNA genes. Gene order and genome content are identical to those of the other cestodes reported thus far, including its congener D. latum. The only exception is Hymenolepis diminuta in which the positions of trnS2 and trnL1 are switched. We tested a PCR-based molecular assay designed to rapidly and accurately differentiate between D. nihonkaiense and D. latum using species-specific primers based on a comparison of their mtDNA sequences. We found the PCR-based system to be very reliable and specific, and suggest that PCR-based identification methods using mtDNA sequences could contribute to the study of the epidemiology and larval ecology of Diphyllobothrium species.

Internal Transcribed Spacer Barcoding DNA Region Coupled with High Resolution Melting Analysis for Authentication of Panax Species (DNA 바코딩과 고해상 융해곡선분석에 기반한 인삼속 식물의 종 판별)

  • Bang, Kyong Hwan;Kim, Young Chang;Lim, Ji Young;Kim, Jang Uk;Lee, Jung Woo;Kim, Dong Hwi;Kim, Kee Hong;Jo, Ick Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.439-445
    • /
    • 2015
  • Background : Correct identification of Panax species is important to ensure food quality, safety, authenticity and health for consumers. This paper describes a high resolution melting (HRM) analysis based method using internal transcribed spacer (ITS) and 5.8S ribosomal DNA barcoding regions as target (Bar-HRM) to obtain barcoding information for the major Panax species and to identify the origin of ginseng plant. Methods and Results : A PCR-based approach, Bar-HRM was developed to discriminate among Panax species. In this study, the ITS1, ITS2, and 5.8S rDNA genes were targeted for testing, since these have been identified as suitable genes for use in the identification of Panax species. The HRM analysis generated cluster patterns that were specific and sensitive enough to detect small sequence differences among the tested Panax species. Conclusion : The results of this study show that the HRM curve analysis of the ITS regions and 5.8S rDNA sequences is a simple, quick, and reproducible method. It can simultaneously identify three Panax species and screen for variants. Thus, ITS1HRM and 5.8SHRM primer sets can be used to distinguish among Panax species.

Detection of 23S rRNA Mutation Associated with Clarithromycin Resistance in Children with Helicobacter pylori Infection (소아 Helicobacter pylori 감염에서 Clarithromycin 내성과 연관된 23S rRNA의 돌연변이)

  • Ko, Jae Sung;Yang, Hye Ran;Seo, Jeong Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.7 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • Purpose: The resistance of H. pylori to clarithromycin is one of the major causes of eradication failure. In H. pylori, clarithromycin resistance is due to point mutation in 23S rRNA. The aims of this study were to investigate the mutation of 23S rRNA and to examine the association of cagA, vacA genotype and clarithromycin resistant genes. Methods: H. pylori DNA was extracted from antral biopsy specimens from 27 children with H. pylori infection. Specific polymerase chain reaction (PCR) assays were used for cagA and vacA. Mutations associated with clarithromycin resistance were detected by using PCR restriction fragment length polymorphism (RFLP) analysis of 23S rRNA gene. Results: A2143G mutation was detected in one case and A2144G in 4, indicating 18.5% were clarithromycin resistant. Among the total of 27, cagA was present in 25 (93%), vacA s1a/m1 in 6 (22%), s1a/m2 in 3 (11%), s1c/m1 in 16 (59%), and s1c/m2 in 1 (4%). All of the 5 clarithromycin resistant strains were cagA (+), among which 2 were s1a/m1 and 2 were s1c/m1. There was no relation between genotypes and clarithromycin resistant genes. Conclusion: Detection of H. pylori resistance to clarithromycin using PCR RFLP from biopsy specimens might be useful for the selection of antibiotics. Clarithromycin resistant genes are not associated with genotypes of cagA and vacA.

  • PDF

Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)

  • Eom, Keeseon S.;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kim, Kyu-Heon;Jeon, Hyeong-Kyu
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.455-463
    • /
    • 2015
  • The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei.

Effects of Allicin on the Gene Expression Profile of Mouse Hepatocytes in vivo with DNA Microarray Analysis

  • Park, Ran-Sook
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The major garlic component, Allicin [diallylthiosulfinate, or (R, S)-diallyldissulfid-S-oxide] is known for its medicinal effects, such as antihypertensive activity, microbicidal activity, and antitumor activity. Allicin and diallyldisulfide, which is a converted form of allicin, inhibited the cholesterol level in hepatocytes, in vivo and in vitro. The metabolism of allicin reportedly occurs in the microsomes of hepatocytes, predominantly with the contribution of cytochrome P-450. However, little is known about how allicin affects the genes involved in the activity of hepatocytes in vivo. In the present study, we used the short-term intravenous injection of allicin to examine the in vivo genetic profile of hepatocytes. Allicin up-regulate ten genes in the hepatocytes. For example, the interferon regulator 1 (IRF-I), the wingless-related MMTV (mouse mammary tumor virus) integration site 4 (wnt-4), and the fatty acid binding protein 1. However, allicin down-regulated three genes: namely, glutathione S-transferase mu6, a-2-HS glycoprotein, and the corticosteroid binding globulin of hepatocytes. The up-regulated wnt-4, IRF-1, and mannose binding lectin genes can enhance the growth factors, cytokines, transcription activators and repressors that are involved in the immune defense mechanism. These primary data, which were generated with the aid of the Atlas Plastic Mouse 5 K Microarray, help to explain the mechanism which enables allicin to act as a therapeutic agent, to enhance immunity, and to prevent cancer. The data suggest that these benefits of allicin are partly caused by the up-regulated or down-regulated gene profiles of hepatocytes. To evaluate the genetic profile in more detail, we need to use a more extensive mouse genome array.

Phylogenetic relationships among Acanthamoeba spp. based on PCR-RFLP analyses of mitochondrial small subunit rRNA gene

  • Yu, Hak-Sun;Hwang, Mee-Yul;Kim, Tae-Olk;Yun, Ho-Cheol;Kim, Tae-Ho;Kong, Hyun-Hee;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.3
    • /
    • pp.181-188
    • /
    • 1999
  • We investigated the value of mitochondrial small subunit rRNA gene (mt SSU rDNA) PCR-RFLP as a taxonomic tool for Acanthamoeba isolates with close inter-relationships. Twenty-five isolates representing 20 species were included in the analysis. As in nuclear 18s rDNA analysis, two type strains (A. astronyxis and A. tubiashi) of morphological group 1 diverged earliest from the other strains, but the divergence between them was less than in 18s riboprinting. Acanthamoeba griffini of morhological group 2 branched between pathogenic (A. culbertsoni A-1 and A. healyi OC-3A) and nonpathogenic (A.palestinensis Reich, A. pustulosa GE-3a, A. royreba Oak Ridge, and A lenticulata PD2S) strains of morphological group 3. Among the remaining isolates of morphological group 2, the Chang strain had the identical mitochondrial riboprints as the type strain of A. hatchetti. AA2 and AA1, the type strains of A. divionensis and A. paradivionensis, respectively, had the identical riboprints as A. quina Vil3 and A. castellanii Ma. Although the branching orders of A. castellanii Neff, A. polyphaga P23, A. triangularis SH621, and A. lugdunensis L3a were different from those in 18S riboprinting analysis, the results obtained from this study generally coincided well with those from 18S riboprinting. Mitochondrial riboprinting may have an advantage over nuclear 18S rDNA riboprinting beacuse the mt SSU rDNAs do not seem to have introns that are found in the 18S genes of Acanthamoeba and that distort phylogenetic analyses.

  • PDF

Analysis of 16S-23S rRNA Intergenic Spacer Regions of Aeromonas veronii biogroup sobria and A. caviae (Aeromonas veronii biogroup sobria와 Aeromonas caviae의 16S-23S rRNA Intergenic Spacer Regions 분석)

  • 강동율;이훈구
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.173-180
    • /
    • 2000
  • The intern1 spacer regions (ISR) between the 16s and 23s $1_RNA$ genes of Aeronzonus iwonii blogroupsobria and A. caviae were investigated by PCR fragment length typing and DNA sequencing. A. iwonii bv.sobria has a speciIic 16s-23s pattern of 2-4 fiagments ranging Goin 479-539 bp, with the exception of thespecies Aeron7onns cmiae, which has 3 fragments ranglog from 470-602 bp. In all of the.4 vei*onii bv. sobr,iaand A, caviae strains examined in this study, the 470-481bp Tragnent, designated TSR-1, invariably contained $tDNA^{uc(GAT)$ and $tDNA^{Ala(TGC)$ in contrast to ISR-2 (513-525 bp). ISR-3 (537-539 bp) and ISR-4 (568-602 bp)containing TEX>$tDNA^{Olu(ITC)$ A stretch of 20 nucleotides (178-197 bp) in the ISR-4 was conserved only wit11mA.caiiue, from which the A. caiiae specific primer, named prAC-F, was designed and used for PCR with aAcaviae coimnon reverse primer A PCR product of 450 bp was apparent alnong I , caiizne strains, but not ii1.4.ijeronii bv. sob~ia strains. The PCR product was oot detected t"-om strains belonging to A. hjili-o~~hila, Ebrio,aud the family Ef\ulcornertei,obncteriaceae. This study provides the first molecular tool for mdentifying the species 8.caviae.ing the species 8. caviae.

  • PDF

PCR-Based Detection of Mycoplasma Species

  • Sung Hyeran;Kang Seung Hye;Bae Yoon Jin;Hong Jin Tae;Chung Youn Bok;Lee Chong-Kil;Song Sukgil
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this study, we describe our newly-developed sensitive two-stage PCR procedure for the detection of 13 common mycoplasmal contaminants (M. arthritidis, M. bovis, M. fermentans, M. genitalium, M. hominis, M. hyorhinis, M. neurolyticum, M. orale, M. pirum, M. pneumoniae, M. pulmonis, M. salivarium, U. urealyticum). For primary amplification, the DNA regions encompassing the 16S and 23S rRNA genes of 13 species were targeted using general mycoplasma primers. The primary PCR products were then subjected to secondary nested PCR, using two different primer pair sets, designed via the multiple alignment of nucleotide sequences obtained from the 13 mycoplasmal species. The nested PCR, which generated DNA fragments of 165-353 bp, was found to be able to detect 1-2 copies of the target DNA, and evidenced no cross-reactivity with the generated DNA of related microorganisms or of human cell lines, thereby confirming the sensitivity and specificity of the primers used. The identification of contaminated species was' achieved via the performance of restriction fragment length polymorphism (RFLP) coupled with Sau3AI digestion. The results obtained in this study furnish evidence suggesting that the employed assay system constitutes an effective tool for the disagnosis of mycoplasmal contamination in cell culture systems.

Identification of Botrytis cinerea, the Cause of Post-Harvest Gray Mold on Broccoli in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Hong, Sae-Jin;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.372-378
    • /
    • 2017
  • In this study, we identified the causative agent of post-harvest gray mold on broccoli that was stored on a farmers' cooperative in Pyeongchang, Gangwon Province, South Korea, in September 2016. The incidence of gray mold on broccoli was 10-30% after 3-5 weeks of storage at $3^{\circ}C$. Symptoms included brownish curd and gray-to-dark mycelia with abundant conidia on the infected broccoli curds. The fungus was isolated from infected fruit and cultured on potato dextrose agar. To identify the fungus, we examined the morphological characteristics and sequenced the rDNA of the fungus and confirmed its pathogenicity according to Koch's postulates. The results of the morphological examination, pathogenicity test, and sequencing of the 5.8S rDNA of the internal transcribed spacer regions (ITS1 and ITS4) and three nuclear protein-coding genes, G3PDH, HSP60, and RPB2, revealed that the causal agent of the post-harvest gray mold on broccoli was Botrytis cinerea. To our knowledge, this is the first report of post-harvest gray mold on broccoli in Korea.

Isolation and Genetic Characterization of Protease-Producing Halophilic Bacteria from Fermenting Anchovy (발효중인 멸치액젓에서 분리한 단백질분해효소 생산 호염성 세균의 유전적 특성)

  • Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.167-176
    • /
    • 2012
  • Three protease-producing halophilic bacteria were isolated from fermenting anchovy. Isolated FAM 10, FAM 114, and FAM 115 were found to grow optimally at salt concentrations of 2-4%, 10%, and 6%, respectively, and could grow in salinity of up to 18-22%. The salinity conditions for optimum protease production were 6% in FAM 10 and 10% in FAM 114 and FAM 115. The protease activity of FAM 10 was gradually inhibited by the addition of NaCl up to 10%, and was not evident at 14%, whereas FAM 114 and FAM 115 displayed protease activity at 14% NaCl and could not be measured at 18%. These results demonstrated that the three isolated strains belong to protease-producing, moderately halophilic bacteria. Strain FAM 10, FAM 114, and FAM 115 were identified as Salinivibrio sp., Halobacillus sp., and Halobacillus sp. respectively, based on comparative analyses of the 16S rRNA gene and the 16S-23S intergenic space sequence (IGS), biochemical testing, and Gram staining. Salinivibrio sp. FAM 10 had two 16S rDNAs containing different sequences at position 191 and four IGSs that harbored no tRNA gene and tRNA genes for isoleucine, alanine, glutamate, lysine, and/or valine. Halobacillus sp. FAM 114 and FAM 115 had completely identical 16S rRNA gene sequences and showed 99% identity to the sequences of various Halobacillus strains. The three IGSs found in the genome of both strains displayed 99% sequence identity with Halobacillus aidingensis and Halobacillus sp. JM-Hb, and had $IGS^0$ with no tRNA gene and $IGS^{IA}$ with tRNA genes for isoleucine and alanine.