• 제목/요약/키워드: 2212 phase

검색결과 121건 처리시간 0.024초

플라즈마 용사 및 열처리 공정을 통한 Bi-2212/2223 초전도체 thick film 제조의 기술 개발 (Technique development of Bi-2212/2223 superconductor thick film manufacturing by plasma spraying and heat treatment)

  • Lee, Seon-Hong;Cho, Sang-Hum;Ko, Young-Bong;Park, Kyeung-Chae
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.262-264
    • /
    • 2005
  • $Bi_{2}Sr_{2}CaCu_{2}O_{x}$(Bi-2212) and $Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{y}$(Bi-2223) high-$T_{c}$ superconductor(HTS) coating have been prepared by plasma spraying and heaat treatment. The Bi-2212 HTS coating later is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating later, and $Bi_{2}Sr_{2}CaCu_{2}O_{y}$(Bi-2212) superconducting phase grow by partial melting process. The superconducting characteristic depends strongly on the conditions of the partial melting process. the Bi-2212 HTS layer consists of the whiskers grown in the diffusion direction. Above the 2212 layer, Bi-2223 phase and secondary phase was observed. The secondary phase is distributed uniformly over the whole surface. This is caused to the microcrack on the coatings surface. Despite everything, the film shows superconducting with an onset $T_{c}$ of about 115K. There are two changes steps. One changes (1step) at 115K is due to the diamagnetism of the Bi-2223 phase and the other changes (2step) at 78K is due to the diamagnetism of the Bi-2212 phase.

  • PDF

BSCCO 플라즈마 용사피막의 부분용융열처리 후 어닐링 시간에 따른 초전도 특성 (Characteristics of Plasma Sprayed BSCCO Superconductor Coatings with Annealing Time After Partial Melt Process)

  • 박정식;이선홍;박경채
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.116-122
    • /
    • 2014
  • $Bi_2Sr_2CaCu_2O_x$(Bi-2212) and $Bi_2Sr_2Ca_2Cu_3O_y$(Bi-2223) high-Tc superconductors(HTS) have been manufactured by plasma spraying, partial melt process(PMP) and annealing treatment(AT). A Bi-2212/2223 HTS coating layer was synthesized through the peritectic reaction between a 0212 oxide coating layer and 2001 oxide coating layer by the PMP-AT process. The 2212 HTS layer consists of whiskers grown in the diffusion direction. The Bi-2223 phase and secondary phase in the Bi-2212 layer were observed. The secondary phase was distributed uniformly over the whole layer. As annealing time goes on, the Bi-2212 phase decreases with mis-orientation and irregular shape, but the Bi-2223 phase increases because a new Bi-2223 phase is formed inside the pre-existing Bi-2212 crystals, and because of the nucleation of a Bi-2223 phase at the edge of Bi-2212 crystals by diffusion of Ca and Cu-O bilayers. In this study the spray coated layer showed superconducting transitions with an onset Tc of about both 115 K, and 50 K. There were two steps. Step 1 at 115 K is due to the diamagnetism of the Bi-2223 phase and step 2 at 50 K is due to the diamagnetism of the Bi-2212 phase.

BSCCO:2212-2223 박막의 엔탈피와 엔트로피 변화 (Transformation of the enthalpy and the entropy in BSCCO:2212-2223)

  • 천민우;박노봉;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.589-590
    • /
    • 2005
  • BSCCO:2212-2223 thin films were fabricated by using the ion beam sputter with a evaporation method at various substrate temperatures, $T_{sub}$, and ozone gas pressures, $pO_3$. The correlation diagrams of the BSCCO phases with Tsub and $pO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 as well as Bi2212 phases come out as stable phases depending on Tsub and $pO_3$. From these results, the thermodynamic evaluation of ${\Delta}H$ and ${\Delta}S$, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase, was performed.

  • PDF

Phase Stability of Bi-2212 and Bi-2223 Thin Films Prepared by IBS Technique

  • Yang, Sung-Ho;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권1호
    • /
    • pp.12-15
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature (T $_{sub}$) and ozone pressure(PO$_3$). It is found out that these phases are limited within very narrow temperature.e.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

BPSCCO System에서 2212 및 2223 phase의 생성.전이 (The Formation and Transition of 2212 and 2223 Phase in BPSCCO System)

  • 박용필;왕종배;김홍철;김왕곤;이준웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.311-315
    • /
    • 1991
  • The formation and transition of 2212 and 2223 phase have been studied in BPSCCO system. The 2212 phase formed in early sintering state reacts on $Ca_2PbO_4,\;Ca_2CuO_3$ and CuO during sintering process and thus produces the 2223 phase. A long sintering period is need to fabricate the superconductor with large volume fraction of 2223 phase. Also, the thin plate-like grains composed of Bi, Sr, Ca and Cu contribute to 2223 phase formation. Though the sample has lower volume fraction of 2223 phase, the critical temperature is measured highly in case of the grain grown to plate-like shape. In this work, the critical temperature of the sample sintered for 264 hr in air was measured 108 K. Microstructure of the sample was varied with condition of heat treatment after sintering process and the sample annealed with $500^{\circ}C$ for 5 hr showed excellent charateristics of 2223 phase formation.

  • PDF

$SrSO_{4}$의 첨가량이 Bi2212 고온초전도체 튜브에 미치는 영향 (The effect of $SrSO_{4}$ on Bi2212 HTS tube)

  • 정승호;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 초전도 자성체 연구회
    • /
    • pp.80-83
    • /
    • 2003
  • $SrSO_4$ were systematically added on Bi2212 from 0 to 10wt% to study the effect of Bi2212 superconductor tube characteristics. After mixing, the melted solution of Bi2212 and $SrSO_4$ was initially poured into the cylinder type of steel mold preheated at $550^{\circ}C$ for 30min and rotated at 1000rpm. Following that, tube was annealed at $840^{\circ}C$ for 72hrs. The tube dimension was 60 in diameter, 60mm in length and 2mm in thickness. XRD data suggests that there was no typical segregation phase related with $SrSO_4$. Well textured grain with typical 2212 phase was observed and average size was $20{\mu}m$. The measured critical current and critical current density of Bi2212 tube added by 5% $SrSO_4$ at 77K were 495A and $202A/cm^2$ respectively.

  • PDF

Bi2Sr2Ca2.2CuO3Ox계에서 초전도상과 Bi-free상의 핵생성과 성장 (Nucleation and Growth of Bi-free and Superconducting Phases in Bi2Sr2Ca2.2CuO3Ox)

  • 오용택;신동찬;구재본;이인환;한상철;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제16권4호
    • /
    • pp.343-350
    • /
    • 2003
  • Using Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ powders prepared by solid state reaction and spray drying method, the nucleation and growth behaviors of superconducting and second phases were investigated during isothermal heat treatment. When the spray drying power was used in contrast with solid state reaction powder, Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2223) phase could be formed at the relatively shot time and second phases were much bigger. Quantitative analysis showed that as the heat treatment time increased, more Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2212) changed to 2223 and the major second phase was changed from (Sr,Ca)$_{14}$Cu$_{24}$ $O_{x}$(14:24) to (Sr,Ca)$_2$Cu$_1$ $O_{x}$ (2:l). The superconducting phase formed at the relatively short time 14:24 phase. Following the Bi-free phase of 14:24 Phase, but long time was needed in places far from the 14:24 phase. Following the formation of the 2212 phase near the 14:24 phase, the 2223 phase nucleated preferentially at the interface between the 2212 and 14:24 phases. The preferential nuclcation of 2223 was explained by its structural similarity and low Interfacial energy with both the Bi-free and 2212 Phases.12 Phases.

Bi 박막의 성막 특성에 관한 연구 (Study on the deposition Characteristics of Bi Thin Film)

  • 최철호;임중관;박용필;이화갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.615-618
    • /
    • 2003
  • 동시 성막법에 의한 저속 성장으로 Bi 2201 및 Bi 2212 박막을 제작하였다. Bi 2212의 조성이 되도록 각 원소를 공급하고 기판 온도 및 산화 가스 압력을 변화시켜 성막을 한 결과 낮은 기판 온도에서는 Bi 2201의 단상이 생성되었으며 75$0^{\circ}C$ 이상이 되면 Bi 2212 상이 생성되었다. 이 중간 온도 영역에서는 Bi 2212와 Bi 2201의 고용체가 생성되고 있음을 해석하였다. 순차 성막법에서 생성막을 평가한 결과 성막이 이루어지고 있는 박막의 가장 표면은 목적 조성으로부터 벗어난 상태에 있으며 결정 구조의 전하 중성 조건을 예상한 곳의 표면은 불안정하다는 것을 알 수 있었다. Bi 2201 상이 생성된 막에서도 순차 성막 과정에 의한 막 생성이라기보다는 오히려 박막 내부에서의 원자 확산 과정에 의해 생성된 것으로 생각된다.

  • PDF

Phase Intergrowth in the Syntheses of BSCCO Thin Films

  • Park, No-Bong;Park, Yong-Pil
    • 한국전기전자재료학회논문지
    • /
    • 제15권8호
    • /
    • pp.736-741
    • /
    • 2002
  • Phase intergrowth some kinds of the $Bi_2Sr_2Ca_{n-1}Cu_nO_y$ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.