• Title/Summary/Keyword: 2212

Search Result 296, Processing Time 0.022 seconds

superconducting properties of Bi-2223 tapes with various heat treatment condition (열처리 온도 및 분위기 변화에 따른 Bi-2223 초전도 선재에서의 특성변화)

  • 하동우;이동훈;하홍수;오상수;김홍대;양주생;윤진국;최정규;권영길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.527-530
    • /
    • 2002
  • A lot of efforts have been focused on the optimization of PIT parameters for Bi-2223/Ag wire. In this paper, initial annealing of Bi-2223/Ag wire to transform Bi-2212 orthorhombic from Bi-2212 tetragonal Precursor was investigated. This initial annealing step at low oxygen partial pressure were to transform Bi-2212 orthorhombic structure and to reduce the formation of second phases at superconducting wire. However Bi-2223 Phases were appeared at higher annealing temperature. Critical currents(Je) of Bi-2223/Ag tapes were sintered at low oxygen Partial pressure were higher than that of the wires sintered at atmosphere condition. In order to investigate the effect of rolling reduction ratio, Bi-2223/Ag HTS tapes were rolled with different reduction ratio. There were no clear difference of Je and filaments shape with various rolling reduction ratio.

  • PDF

Phase Intergrowth in the Syntheses of BSCCO Thin Films

  • Park, No-Bong;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.736-741
    • /
    • 2002
  • Phase intergrowth some kinds of the $Bi_2Sr_2Ca_{n-1}Cu_nO_y$ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

Phase Intergrowth in the Syntheses of Bi-superconducting Thin Films

  • Chun, Min-Woo;An, In-Soon;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.490-493
    • /
    • 2002
  • Phase intergrowth some kinds of the Bi$_2$Sr$_2$Ca$\_$n-1/Cu$\_$n/O$\_$y/ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

  • PDF

Fabrication of Bi2212 superconductor by Centrifugal Forming Process (원심 성형법에 의한 고온초전도체 제조)

  • 정승호;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.503-506
    • /
    • 2002
  • BSCCO 2212 HTS was fabricated by CFP(centrifugal forming process). The powder was initially ground in the mixing ratio of 2:2::1:2 with 10% of SrSO$_4$. The temperature increased up to 1035$^{\circ}C$ and 1200$^{\circ}C$ for melting. The melt was poured into the preheated and rotating copper mould from 200 to 600$^{\circ}C$. The specimen was not broken by thermal impact when the melting temperature was over 1050$^{\circ}C$ and copper mould was preheated over 400$^{\circ}C$ for 30min. A tube type of specimen was annealed at 840$^{\circ}C$ or 860$^{\circ}C$ in oxygen atmosphere for 24hours. Typical microstructure was analyzed in terms of CFP parameters by XRD, SEM, and EDS and also superconducting characteristics were compared.

  • PDF

Phase Stability Region of Bi-superconductor Thin Films Prepared by IBS Technique (이온빔 스퍼터법으로 제작한 Bi 초전도 박막의 상안정 영역)

  • Lim, Jung-Kwan;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.308-311
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature($T_{sub}$) and ozone pressure( $PO_3$ ). It is found out that these phases show similar $T_{sub}$ and $PO_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Fabrication and Characterization of BSCCO System High-Temperature Superconductor Tube Using Centrifigal Forming Process (원심성형법을 이용한 BSCCO계 고온초전도튜브 제조 및 특성 분석)

  • 박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.801-804
    • /
    • 2000
  • High-temperature superconductor of Bi-2212 system was fabricated by CFP(Centrifugal Forming Process). To make a uniform specimen slurry was prepared in the ratio of 7:3(powder : binder) and ball milled for 24 hours. Milled slurry was charged into a rotating mold with 450 rpm and dried at room temperature. Then the specimen was performed binder burn-out at 35$0^{\circ}C$ and heated for partial melting to 86$0^{\circ}C$. XRD analysis of most specimens were shown 2212 phase and observed a local plate shped microstructure with a well aligned c-axis direction from SEM images. Measured T$_{c}$(Critical temperature) was about 64 K.K.

  • PDF

Phase Diagram of Single Crystal in Bi System (Bi계 초전도 박막의 단결정 생성영역)

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.327-328
    • /
    • 2005
  • Bi-system thin films are prepared by ion beam sputtering technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature($T_{sub}$) and ozone pressure($PO_3$). It is found out that these phases show similar $T_{sub}$ and $PO_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

A Study on the Formation of Single Crystal in BiSrCaCuO Thin Films (BiSrCaCuO 박막의 단결정 형성에 관한 연구)

  • Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.39-42
    • /
    • 2004
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature(Tsub) and ozone pressure(PO3). It is found out that these phases show similar Tsub and PO3 dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

R-T Characteristic in BSCCO Thin Films (BSCCO 박막의 저항-온도 특성)

  • Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.98-101
    • /
    • 2005
  • BSCCO thin films fabricated by using the evaporation method. As a result, although the composition of Bi2212 was set up, the phase of Bi2201, Bi2212 and Bi2223 was formed. The formation area of these stable phases is indicated as inclined line in the direction of the right lower end from the Arrhenius plot of the substrate temperature-oxidation gas pressure, and are distributed in very small area. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation.

  • PDF

Effect of Processing Factors on Critical Current Density in Bi2212/Ag Wires

  • Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Han, Il-Yong;Ha, Hong-Soo;Sohn, Ho-Sang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1243-1244
    • /
    • 2006
  • Five kinds of double stacked 385 (55 x7) filamentary Bi2212/Ag round wires and 55 filamentary tapes with different Ag ratios (silver area/superconductor area) have been fabricated via PIT method, and the effects of Ag ratio and processing factors on critical current density were studied. The effects of the maximum temperature and average filament diameter on critical current density were also studied. The wire of 0.74 mm diameter having Ag ratio 3.7 showed critical current density of $2,218\;A/mm^2$ at 4.2 K, 0 T.

  • PDF