• Title/Summary/Keyword: 2011 Van earthquakes

Search Result 14, Processing Time 0.016 seconds

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.

Investigation on seismic isolation retrofit of a historical masonry structure

  • Artar, Musa;Coban, Keziban;Yurdakul, Muhammet;Can, Omer;Yilmaz, Fatih;Yildiz, Mehmet B.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.501-512
    • /
    • 2019
  • In this study, seismic vulnerability assessment and seismic isolation retrofit of Bayburt Yakutiye Mosque is investigated. Bayburt Yakutiye Mosque was built in the early 19th century at about 30-meter distance to Coruh river in the center of Bayburt in Turkey. The walls of historical masonry structure were built with regional white and yellow stones and the domes of the mosque was built with masonry bricks. This study is completed in four basic phases. In first phase, experimental determination of the regional white stone used in the historical structure are investigated to determine mechanical properties as modulus of elasticity, poison ratio and compression strengths etc. The required information of the other materials such as masonry brick and the regional yellow stone are obtained from literature studies. In the second phase, three dimensional finite element model (FEM) of the historical masonry structure is prepared with 4738 shell elements and 24789 solid elements in SAP2000 software. In third phase, the vulnerability assessment of the historical mosque is researched under seismic loading such as Erzincan (13 March 1992), Kocaeli (17 August 1999) and Van (23 November 2011) earthquakes. In this phase, the locations where damage can occur are determined. In the final phase, rubber base isolators for seismic isolation retrofit is used in the macro model of historical masonry mosque to prevent the damage risk. The results of all analyses are comparatively evaluated in details and presented in tables and graphs. The results show that the application of rubber base isolators can prevent to occur the destructive effect of earthquakes.

Seismic assessment of R/C residential buildings with infill walls in Turkey

  • Korkmaz, Kasim Armagan;Kayhan, Ali Haydar;Ucar, Taner
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • In 1999 Marmara and 2011 Van earthquakes in Turkey, majority of the existing buildings either sustained severe damage or collapsed. These buildings include masonry infill walls in both the interior and exterior R/C frames. The material of the masonry infill is the main variant, ranging from natural stones to bricks and blocks. It is demanding to design these buildings for satisfactory structural behavior. In general, masonry infill walls are considered by its weights not by interaction between walls and frames. In this study, R/C buildings with infill walls are considered in terms of structural behavior. Therefore, 5 and 8-story R/C buildings are regarded as the representative models in the analyses. The R/C representative buildings, both with and without infill walls were analyzed to determine the effects of structural behavior change. The differences in earthquake behavior of these representative buildings were investigated to determine the effects of infill walls leading structural capacity. First, pushover curves of the representative buildings were sketched. Aftermath, time history analyses were carried out to define the displacement demands. Finally, fragility analyses were performed. Throughout the fragility analyses, probabilistic seismic assessment for R/C building structures both with and without infill walls were provided. In this study, besides the deterministic assessment methodology, a probabilistic approach was followed to define structural effect of infill walls under seismic loads.

A study on seismic behaviour of masonry mosques after restoration

  • Altunisik, Ahmet C.;Bayraktar, Alemdar;Genc, Ali F.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1331-1346
    • /
    • 2016
  • Historical masonry structures have an important value for cultures and it is essential for every society to strengthen them and confidently transfer to the future. For this reason, determination of the seismic earthquake response, which is the most affecting factor to cause the damage at these structures, gain more importance. In this paper, the seismic earthquake behaviour of Kaya Çelebi Mosque, which is located in Turkey and the restoration process has still continued after 2011 Van earthquake, is determined. Firstly the dynamic modal analysis and subsequently the seismic spectral analysis are performed using the finite element model of the mosque constructed with restoration drawings in SAP2000 program. Maximum displacements, tensile, compressive and shear stresses are obtained and presented with contours diagrams. Turkish Earthquake Code and its general technical specifications are considered to evaluate the structural responses. After the analyses, it is seen that the displacements and compressive/shear stresses within the code limits. However, tension stresses exceeded the maximum values at some local regions. For this mosque, this is in tolerance limits considering the whole structure. But, it can be said that the tension stresses is very important for this type of the structures, especially between the stone and mortar. So, some additional strengthening solutions considering the originality of historical structures may be applicable on maximum tensile regions.