• Title/Summary/Keyword: 2011 Van earthquakes

Search Result 14, Processing Time 0.015 seconds

Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van Earthquakes in 2011

  • Muvafik, Murat
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.457-472
    • /
    • 2014
  • The paper presents the field investigations and seismic analyses of a historical masonry brick minaret damaged during October 23 (Erciş) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Ulu Mosque Minaret located on Tebriz Kap1 Street in the city centre of Van, Turkey is selected for investigation. Two earthquakes hit the minaret within seventeen days, causing progressive damage. It was seen from the field investigations that the minaret was heavily damaged. To validate the field investigations, three dimensional finite element model of the minaret is constituted by ANSYS software using relievo drawings. Finite element model of the minaret is analyzed under the Van earthquake records to determine the seismic behavior. The displacements, maximum and minimum principal stresses and strains are obtained from the analyses and compared with field observations.

Strong earthquakes and measurement performance of masonry and adobe structures

  • Liu, Yanling;Han, Qinkia
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.99-118
    • /
    • 2013
  • Earthquakes, which are unavoidable natural phenomena in Turkey, have often produced economic and social disaster. The latest destructive earthquakes happened in Van city. Van, Turkey, earthquakes with M = 7.2 occurred on 23 October 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanlivillage) and M = 5.6 on 9 November 2011 epicentered near the town of Edremit south of Van in eastern Turkey and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 4000 buildings collapsed or were seriously damaged. The majority of the damaged structures were seismically insufficient, unreinforced masonry and adobe buildings in rural areas. In this paper, site surveys of the damaged masonry and adobe buildings are presented and the reasons for the caused damages are discussed in detail.

Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey

  • Sayin, Erkut;Yon, Burak;Calayir, Yusuf;Gor, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.503-518
    • /
    • 2014
  • On October 23, 2011, an earthquake of magnitude 7.0 struck Van, Turkey. This powerful earthquake caused the deaths of 604 people, more than 2,000 injuries, and a considerable loss of property. After this devastating earthquake, on November 9, 2011, another earthquake of magnitude 5.7 occurred. This moderate earthquake caused the deaths of 40 people. Partial and total collapse of the masonry and adobe buildings occurred in the rural areas of Van. In this paper, the acceleration records and response spectrums of the earthquakes were given and the structural deficiencies and reasons of the failures of the rural buildings were evaluated according to the Turkish Seismic Code. The observed failures showed that low quality of structural materials, poor workmanship, lack of engineering services and insufficient detailing of the structural elements are the main reasons of damages.

Lessons learned from recent destructive Van, Turkey earthquakes

  • Yon, Burak;Sayin, Erkut;Calayir, Yusuf;Ulucan, Zulfu Cinar;Karatas, Mehmet;Sahin, Humeyra;Alyamac, Kursat Esat;Bildik, Abdullah Tevfik
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.431-453
    • /
    • 2015
  • A destructive earthquake, the magnitude of this earthquake was 7.2, hit Van, Turkey on October 23, 2011. After this devastating earthquake, a moderate earthquake which had 5.7 magnitude on November 9, 2011 occurred in Edremit, Van. These earthquakes caused heavy damages and collapses in many reinforced concrete buildings with loss of lives. In this paper, characteristics of ground motions of these earthquakes were studied and, deficiencies in structural elements and engineering faults such as poor workmanship and quality of construction, soft and weak stories, strong beam-weak column, short column, large overhang, hammering and unconfined gable wall were investigated. According to the observations, it was seen that, low quality of structural materials, lack of engineering services, inappropriate design and construction with insufficient detailing of the structural elements were the main reasons of heavy damages.

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Engineering implications of the RC building damages after 2011 Van Earthquakes

  • Ozmen, Hayri Baytan;Inel, Mehmet;Cayci, Bayram Tanik
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.297-319
    • /
    • 2013
  • Two destructive earthquakes occurred on October 23 and November 9, 2011 in Van province of Turkey. The damage in residential units shows significant deviation from the expectation of decreasing damage with increasing distance to epicenter. The most damaged settlement Ercis has the same distance to the epicenter with Muradiye, where no damage occurred while relatively less damage observed in Van having half distance. These three cities seem to have resembling soil conditions. If the damages are evaluated: joint failures and insufficient lap splice lengths are observed to be the main causes of the total collapses in RC buildings. Additionally, low concrete strength, reinforcement detailing mistakes, soft story, heavy overhang, pounding and short columns are among other damage reasons. Examples of damages due to non-structural elements are also given. Remarkable points about seismic damages are: collapsed buildings with shear-walls, heavily damaged buildings despite adequate concrete strength due to detailing mistakes, undamaged two-story adobe buildings close to totally collapsed RC ones and undamaged structural system in buildings with heavily damaged non-structural elements. On the contrary of the common belief that buildings with shear-walls are immune to total collapse among civil engineers, collapse of Gedikbulak primary school is a noteworthy example.

Damages of minarets during Erciş and Edremit Earthquakes, 2011 in Turkey

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Muvafik, Murat
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.479-499
    • /
    • 2014
  • This paper illustrates the damages of reinforced concrete and masonry minarets during October 23 (Erciş) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Erciş and Edremit are townships located 90km and 18km from Van city center in Turkey, respectively. Ground accelerations and response spectrums for these earthquakes are given in this paper. A total of 63 reinforced concrete and masonry minarets are heavily damaged or collapsed in the city center and villages nearby after both earthquakes. Because of the fact that there is no Turkish standard and specification directly related to design of minarets, nearly all of the constructions are carried out by workers using only their own technical knowledge. So, all of the non-engineering reinforced concrete and masonry minarets completely collapsed or damaged heavily. From the study, it is seen that the damages are due to several reasons such as site effect, location, and length of the fault, reduction in cross section and formation of the discontinuity, use of plain reinforcement steel, use of concrete with insufficient strength, existence of short lap splices and incorrect end hook angle, larger mass and stiffness concentrations on some region, longitudinal reinforcements discontinuity, cracks at the cylindrical body, and damage of spire and end ornament. In addition to these reasons, the two earthquakes hit the minarets within seventeen days, causing progressive damage. So, the existing design and construction practices should be improved to provide sufficient earthquake performance. Also, it is recommended that there should be a safe distance between the minaret and surrounding structures to reduce the loose of life after earthquake.

Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region

  • Isik, Ercan;Kutanis, Mustafa
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.893-910
    • /
    • 2015
  • Earthquake safety of existing buildings has gained considerable importance after earthquakes which have occurred in our country especially in the last 30 years. Performance based assessment methods have been widely used for existing reinforced concrete structures. This study aims to investigate the earthquake performances of the building stock located in Van Lake basin in Eastern Anatolia of Turkey. The case study of buildings has been modeled on and the structural performances have been determined by employing the non-linear methods described in the latest Turkish Earthquake Code published in 2007. The Van lake basin is located on the very seismically active in a region. On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey. The earthquake ground motion was recorded as about 0.1g in Bitlis province. Performance evaluations have been performed by taking samples from each district consisting urban building stocks of Bitlis. A total of 16 reinforced concrete buildings have been evaluated. Among them, 53% of those buildings were determined in the Fully Operational performance level; 13% of them in the Life Safety performance and 34% of them could not be evaluated because of the ratio of the effective mass of first mode to the total mass of the buildings was smaller than 0.70. Therefore, incremental equivalent seismic load methods, which are a part of Turkish Earthquake Code -2007, cannot be used.

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.

Evaluation of rigid-end offset effect on seismic behavior of a structure subjected to Van earthquake

  • Bekiroglu, Serkan;Sahina, Abdurrahman;Sevima, Baris;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.857-879
    • /
    • 2013
  • Numerical damage assessment of Van train station building consisting of three RC blocks due to 2011 Van Earthquakes by nonlinear dynamic analysis is presented. The structural model is created with rigid-end offsets and plastic hinges for nonlinear analysis. Rigid-end offsets are considered for connection areas and proposed for wall-supported elements. In wall-supported elements, walls take place in a limited part of the columns. Nonlinear dynamic analysis of the building with and without rigid-end offsets is performed by using real earthquake records and results are compared. The results show that rigid-end offsets have significant effects on the seismic behavior of the structures.