• Title/Summary/Keyword: 2004 Niigata Chuetsu earthquake

Search Result 4, Processing Time 0.018 seconds

Damage to earth structures by the 2004 Niigata-ken Chuetsu earthquake in Japan and their rehabilitation works

  • Koseki, Junichi;Tsutsumi, Yukika
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.430-433
    • /
    • 2006
  • Damage to earth structures for roads, railways and residential areas, as well as dams and river levees, during the 2004 Niigata-ken Chuetsu earthquake in Japan, and their rehabilitation works are overviewed. Several influential factors are pointed out, such as a) heavy rainfall preceding the earthquake, b) large aftershocks, c) geological conditions for subsoil including existence of liquefiable layers, d) compaction degrees for embankment, and e) drainage capacity from subsoil/embankments. It is also reported that, in the reconstruction works of damaged roads and railways, preferred use of geogrid-reinforced soil retaining walls was implemented.

  • PDF

Development of seismic fragility curves for high-speed railway system using earthquake case histories

  • Yang, Seunghoon;Kwak, Dongyoup;Kishida, Tadahiro
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.

Study on Correlation between Large Earthquake-Induced Underground Structure Uplift and Geological Settings (대지진에 의한 지하구조물 부상과 지질학적 특성의 상관성 연구)

  • Kang, Gi-Chun;Kim, Ji-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • During the 2004 Niigata-ken Chuetsu, Japan, earthquake, more than 1,450 underground structures, known as sewer manhole, were uplifted up to 1.5m in Nagaoka and Ojiya city. The uplift damage can be a serious matter because they not only hinder the flow of wastewater systems, as a part of lifeline systems, but also disturb traffic flows. For restoration works, an open-cut investigation of damaged wastewater system was conducted by the Nagaoka city government. The results from the investigation compiled valuable data sets for buried pipeline damage due to earthquakes. In the present study, the factors affecting the uplift amount of the underground structure is investigated by using the data sets which include locations of damaged sections and inclination of pipeline before and after the earthquake and the SPT borehole logs in the affected area. Correlation analysis between the underground structure uplift and the geological settings in the affected area revealed that ground water depth and original subsoil, including thickness of clay layer, SPT N-value and fill thickness are the key parameters for the uplift phenomenon.

Liquefaction-Induced Uplift of Geotechnical Buried Structures: Centrifuge Modeling and Seismic Performance-Based Design (지반 액상화에 의한 지중 매설구조물의 부상: 원심모형시험 및 내진성능설계)

  • Kang, Gi-Chun;Iai, Susumu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.5-16
    • /
    • 2012
  • Geotechnical buried structures with relatively light weight have been suffering from uplift damage due to liquefaction in the past earthquakes. The factor of safety approach by Koseki et al. (1997a), which is widely used in seismic design, predicts the triggering of uplift. However, a method for "quantitative" estimates of the uplift displacement has yet to be established. Estimation of the uplift displacement may be an important factor to be considered for designing underground structures under the framework of performance-based design (ISO23469, 2005). Therefore, evaluation of the uplift displacement of buried structure in liquefied ground during earthquakes is needed for a performance-based design as a practical application. In order to predict the uplift displacement quantitatively, a simplified method is derived based on the equilibrium of vertical forces acting on buried structures in backfill during earthquakes (Tobita et al., 2012). The method is verified through comparisons with results of centrifuge model tests and damaged sewerage systems after the 2004 Niigata-ken Chuetsu, Japan, earthquake. The proposed flow diagram for performance-based design includes estimation of the uplift displacement as well as liquefaction limit of backfill.