• Title/Summary/Keyword: 20 kHz power system

Search Result 133, Processing Time 0.03 seconds

Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System (60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰)

  • 유권종;정영석;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.563-569
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency DC-DC converter, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter, and an AC filter. The 20kHz switched high frequency converter is used to generate bipolar PWM pulse, and the high frequency transformer transforms its voltage twice, which is subsequently rectified by diode bridge rectifiers for a full-wave rectified 60 Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than other power conditioning systems due to elimination of 60Hz transformer.

Study to Analyze the Grounding System in the 20 kHz Power Installation (20 kHz 전력설비 접지시스템 분석에 관한 연구)

  • Jung, Jin-Soo;Han, Woon-Ki;Park, Chan-Urm;Song, Young-Sang;Lim, Hyun-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1308-1312
    • /
    • 2013
  • In this paper, carried out for optimal ground system for ensuring safety for electricity used to power equipment in the 20 kHz frequency. Now the grounding system of the mesh electrode, electrode rods are installed for power plant safety and protection against electric shock. However, the electrical equipment grounding system in the 20 kHz were considering the increasing grounding impedance due to the high frequency and the magnetic shielding. But until now, there has been little research on the grounding system. To solve this problem, In this paper was proposed optimal grounding system due to the experiment using a mesh electrode, rod electrode, aluminum plate electrodes. Measurement results, grounding resistance was depending on the material of the electrode grounding resistance. In addition, the leakage current (induced) appeared to be affected depending on the type of electrode.

A 20kHz Inverter for Inductive Charging System of Electric Vehicle (전기자동차 비접촉식 충전시스템을 위한 20kHz 인버터 설계)

  • Kim, Chul-Woo;Kim, Sang-Beom;Soh, Joon-Young;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1175-1176
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. EVSEs are classified with a conductive charging system and an inductive charging system by the power transfer method. Inductive charging systems are necessary to use high frequency converters to increase the output power and to reduce the size of the charging systems. In this paper, a 20kHz inverter for inductive charging system has been designed and PSCAD/EMTDC have been used to simulate the output characteristics of the 20kHz inverter.

  • PDF

A study on Protection Coordination Method for Electric Vehicle Charging Facility based on the Wireless Power Transmission (무선전력전송 전기충전설비용 전원공급장치의 최적운용방안에 관한 연구)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-Seok;Rho, Daeseok;Ko, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.42-51
    • /
    • 2017
  • This paper deals with the power supply facility providing wireless power transmission for a type of electric vehicles called the on-line electric vehicle(OLEV) and proposes optimal protection coordination methods which analyze the faultsin the 60Hz and 20kHz bands using PSCAD/EMTDC, which is the typical commercial software for the distribution system. The simulation results show that the proposed methods can reduce the fault current by introducing an NGR (Neutral Ground Resistor) in the 60Hz band and prevent the malfunctioning of the protection device by installing a CT in the neutral wire in the 20kHz band when a ground fault occurs.

A Study on the Temperature Control of Vapor System Using Induction Heating (유도가열 증기발생장치의 온도제어)

  • Shin, Dae-Chul;Yoo, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.117-123
    • /
    • 2010
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. Resonant high frequency inverter make system of high capacity and high efficiency. This paper describes the temperature control of induction heating system hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20 to 44[kHz].

Series-resonant High efficiency Induction Heating System following Resonant Frequency (공진주파수 추종 직렬공진형 고효율 유도.가열장치에 관한 연구)

  • 성병기;박성준;김광태;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.124-128
    • /
    • 1999
  • The object of the present study is to obtain a 20[kHz], 10[kW] rating, high efficiency induction heating system by high frequency serises-resonant inverter. Proposed is a topology that minimize a reactive power, by which direct iOIrt voltage is variable corresponding to the variation of the load, heated-object, and by which the switching of inverter is forced to follow a resonant frequency. And assured that the power foctor of the inverter in a induction heating system is proper about O.96 through the simulation and results.esults.

  • PDF

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

Bidirectional Pulse Power Supply for Dielectric Barrier Discharge (유전체 장벽 방전을 위한 양방향 펄스 전원장치)

  • Shin, Wan-Ho;Hong, Won-Seok;Jeoung, Hwan-Myoung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1521-1523
    • /
    • 2005
  • High voltage plasma power supply was adopted to control polluted gases and an ozone generation. Bidirectional pulse power supply consisted of power semiconductor switch devices, a high voltage transformer, and a control board adapted switching method. Plasma power supply with sinusoidal bidirectional pulse, which has output voltage range of 0-20kV and output frequency range of 1kHz-20kHz, is realized. Using proposed system, pulsed high voltage/high frequency discharges were tested in a DBD(dielectric barrier discharge) reactor, and the spatial distribution of a glow discharge was observed. The system showed stable operational characteristics, even though the voltage and the frequency increased. Above features were verified by experiments.

  • PDF

Advantages of Acoustic Leak Detection System Development for KALIMER Steam Generators

  • Kim, Tae-Joon;Valery S. Yughay;Hwang, Sung-Tai;Chai, Jeong-Kyung;Choi, Jong-Hyeun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2001
  • For sodium cooling liquid metal reactors during the last 25 years, it was most important to verify the safety of the steam generator, which absolutely requires a water leak detection system with fine sensitivity and response. This study describes the structure and leak classification of the HAMMER (Korea Advanced Liquid Metal Reactor) steam generator, compared with other classifications, and explains the effects of leak development. The requirements and experimental situations for the development of the KALIMER acoustic leak detection system (KADS) which detects micro leaks, not intermediate leaks, are introduced. We proposed four frequency bands, 1∼8kHz, 8∼20kHz, 20∼40kHz and 40∼200kHz, split effectively for analyzing the detected acoustic leak signals obtained from the sodium-water reaction model or water model in the mock-up system.

  • PDF

Three-phase 3-level and 2-level SVPWM Implementation with 100 kHz Switching Frequency using FPGA (FPGA를 이용한 100 kHz 스위칭 주파수의 3상 3-level과 2-level의 SVPWM의 구현)

  • Moon, Kyeong-Rok;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • This paper presents a 3-level, 2-level SVPWM technique with 100 kHz switching using Verilog HDL, one of the languages of FPGA. In the case of IGBT devices mainly used in inverters, they have a switching frequency around 20kHz. Recent research and development of next-generation power semiconductor devices such as GAN has enabled switching of more than 100kHz, which can miniaturize power converters, and apply various new algorithms due to the injection of harmonics. In the existing system using the IGBT, the control using the DSP is common, but the controller configuration for 100 kHz switching requires the use of FPGA. Therefore, this paper explains the theory and implementation of SVPWM applied to two-level and three-level inverters using FPGAs and verifies the performance through the output waveform. In addition, this paper implements 3-level SVPWM by using only one carrier instead of using two carriers in the conventional method.