• Title/Summary/Keyword: 20(S)-protopanaxatriol (PPT)

Search Result 6, Processing Time 0.017 seconds

20(S)-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

  • Kim, Dae Yong;Ro, Jai Youl;Lee, Chang Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.189-198
    • /
    • 2015
  • Background: Antiallergic effect of 20(S)-protopanaxatriol (PPT), an intestinal metabolite of ginseng saponins, was investigated in guinea pig lung mast cells and mouse bone marrow-derived mast cells activated by a specific antigen/antibody reaction. Methods: Increasing concentrations of PPT were pretreated 5 min prior to antigen stimulation, and various inflammatory mediator releases and their relevant cellular signaling events were measured in those cells. Results: PPT dose-dependently reduced the release of histamine and leukotrienes in both types of mast cells. Especially, in activated bone marrow-derived mast cells, PPT inhibited the expression of Syk protein, cytokine mRNA, cyclooxygenase-1/2, and phospholipase $A_2$ ($PLA_2$), as well as the activities of various protein kinase C isoforms, mitogen-activated protein kinases, $PLA_2$, and transcription factors (nuclear factor-${\kappa}B$ and activator protein-1). Conclusion: PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the $Ca^{2+}$ influx, protein kinase C, and $PLA_2$, which are propagated by Syk activation upon allergic stimulation of mast cells.

Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol on the Inflammatory Mediators Release from the Activated Mast Cells (20(S)-Protopanaxadiol 및 20(S)-Protopanaxatriol이 활성화된 비만세포로부터의 염증 매개체 유리에 미치는 영향)

  • Ro, Jai-Youl;Han, Yong-Nam;Choi, Kwang-Tae;Lee, Chang-Ho
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.316-323
    • /
    • 2009
  • Ginseng saponins have various pharmacological effects on the immune system. 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT) are the species of ginseng saponin metabolites that are formed by human intestinal bacteria and detected in circulation. The effects of PPD and PPT on the inflammatory mediator release from the activated mast cells were tested. Histamine release was evaluated in activated guinea pig lung mast cells, and the secretion of interleukin-4 (IL-4), interleukin-8 (IL-8), and the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) was assessed in an HMC-1 cell after treating it with ginseng saponin metabolites. The results are as follows. PPT, at its maximum concentration of $100\;{\mu}M$, completely abolished the secretion of IL-4 from the PMA-stimulated HMC-1 cell. It also inhibited IL-8 secretion from the same cells by about 40-50% of the PMA-treated DMSO control. PPD, at its maximum concentration of $100\;{\mu}M$, showed a tendency to induce histamine release from the guinea pig lung mast cells. It inhibited the secretion of IL-4 (by 89% of the PMA-treated DMSO control) in the PMA-stimulated HMC-1 cell, but did have a significant effect on the IL-8 release from the same cell. Both PPD and PPT showed no effects, however, on the release of TNF-${\alpha}$ from the PMA-stimulated HMC-1 cell. These results suggest that PPD and PPT are from the ginseng metabolites that are responsible for the immunomodulating activity of ginseng extracts when they are taken orally.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model

  • Sung-Won Kim;Byung-Cheol Han;Seung-Ho So;Chang-Kyun Han;Gyo In;Chae-Kyu Park;Sun Hee Hyun
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.74-80
    • /
    • 2023
  • Background: Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods: Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion: After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim;Seon Been Bak;Won-Yung Lee;Su Jin Bae;Eun Hye Lee;Ju-Hye Yang;Kwang Youn Kim;Chang Hyun Song;Sang Chan Kim;Un-Jung Yun;Kwang Il Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.