• Title/Summary/Keyword: 2.5-D modeling

Search Result 516, Processing Time 0.029 seconds

Web-based 3D Face Modeling System for Hairline Modification Surgery (헤어라인 교정 시술을 위한 웹기반 얼굴 3D 모델링)

  • Lee, Sang-Wook;Jang, Yoon-Hee;Jeong, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.91-101
    • /
    • 2011
  • This research aims to suggest web-based 3D face modeling system for hairline modification surgery. As public interests in beauty regarding face escalate with era of wide persoanl mobile smart iCT devices, need for medical information system is urgent and increasing demand. This research attempted to build 3D facing modeling library deploying conventional technology and proprietary software available. Implications from the our experiment found that problems and requirement for developing new web based standard. We suggest new system from our experiment and literature review regarding relevant technologies. Main features of our suggested systems is based on studies regarding hair loss treatment such as medical science, beauty studies and information technology. This system processes input images of 2D frontal and profile pictures of face into 3D face modeling with mesh-data. The mesh data is compatible with web standard technology including SVG and Canvas Tag supported natively by HTML5.

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion (감정확률을 이용한 동적 얼굴표정의 퍼지 모델링)

  • Kang, Hyo-Seok;Baek, Jae-Ho;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • This paper suggests to apply mirror-reflected method based 2D emotion recognition database to 3D application. Also, it makes facial expression of fuzzy modeling using probability of emotion. Suggested facial expression function applies fuzzy theory to 3 basic movement for facial expressions. This method applies 3D application to feature vector for emotion recognition from 2D application using mirror-reflected multi-image. Thus, we can have model based on fuzzy nonlinear facial expression of a 2D model for a real model. We use average values about probability of 6 basic expressions such as happy, sad, disgust, angry, surprise and fear. Furthermore, dynimic facial expressions are made via fuzzy modelling. This paper compares and analyzes feature vectors of real model with 3D human-like avatar.

3-D Spatial Data Modeling Software (3차원 공간자료 모델링 소프트웨어 개발)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • We developed a modeling and visualization software that can analyze 3-dimensional spatial information in the ArcView environment. The software constructs and visualizes an object in 3 dimensional space from the input data given a number of horizontal cross-sections. The software can generate and visualize the cross-sections of the object in any azimuth and inclination. Utilizing the program users can modify the 3-D shape of the object by interactively editing the cross-sections.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

A study on the effectiveness of STEAM education program applying 3D-modeling at astronomy Units

  • Kim, Sang-Geol;Kim, Hyoungbum;Kim, Yonggi;Choi, Hongsoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2021
  • 천문학은 시간적·공간적 규모가 크기 때문에 학습자의 수준에 따라 공감과 이해의 정도에 차이가 크다. 2015 개정 과학과 교육과정에 따르면 초등학교 5학년부터 태양계에 대한 내용을 다루고 있다. 하지만 이를 설명하기 위한 교과서의 사진과 동영상 자료는 태양계를 명확하게 전달하기 어렵다. 이에 대한 대안으로 3D Modeling을 통한 체험 교육을 제안한다. 천문학 교과에서 3D Modeling의 적용은 학생들의 흥미, 태도의 향상 등 교육적 효과의 상승으로 이어진다. 이에 본 연구에서는 3D Modeling의 도구 중 3D 프린터와 레이저 절단기를 이용해 융합교육(STEAM) 프로그램을 개발하고 학생들에게 적용하여 창의적 문제해결능력에 미치는 영향을 알아보고자 한다. 초등학교 교육과정에 제시된 태양계 관련 학습자료를 분석하였고, 융합교육(STEAM)에서 제안하는 상황제시, 창의적 설계, 감성적 체험의 교육단계 중 '창의적 설계' 단계에 3D 프린터와 레이저 절단기를 통해 개발한 kit를 이용하여 융합교육(STEAM) 프로그램에 적용하였다. 개발된 프로그램을 형식 교육의 장에 적용하여 개발된 평가지표를 토대로 사전·사후 평가를 실시한다. 향후 3D Modeling을 초등학교 교육과정뿐만 아니라 중·고등학교 교육과정 또한 분석하여 적용한다면, 천문대중화를 위해 큰 도움이 될 수 있을 것으로 사료된다.

  • PDF

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

Study on sensitivities of generalized RRI method for data analysis of CSAMT survey (인공전류원 MT탐사 자료해석을 위한 GRRI법의 감도해석에 관한 연구)

  • Kim, Hee-Joon;Park, Mi-Kyung;Seol, Soon-Jee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.281-286
    • /
    • 2005
  • This paper presents sensitivity analysis of generalized rapid relaxation inversion (GRRI) algorithm for inverting controlled-source audio-frequency magnetotelluric (CSAMT) data. The algorithm was originally developed by modifying the RRI algorithm to recover a two-dimensional (2-D) conductivity structure of the Earth from MT data, but can be extended to include CSAMT data if it is combined with 2.5-D forward modeling. These GRRI approximate sensitivities are validated by comparison with exact 1-D and 2.5-D sensitivities. The comparison shows that the GRRI sensitivity is a good approximation to the exact sensitivity and has about half magnitude of the RRI sensitivity. Although the magnitude of the GRRI sensitivity is still slightly larger than that of the 2.5-D sensitivity, both sensitivities are broadly similar in shape when source-receiver offsets are greater than one skin depth on the Earth.

  • PDF

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.