• Title/Summary/Keyword: 2.2.15 cells

Search Result 3,392, Processing Time 0.035 seconds

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

Activation of Phospholipase D2 through Phosphorylation of Tyrosine-470 in Antigen-stimulated Mast Cells

  • Kim Young Mi
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.492-498
    • /
    • 2005
  • The mechanism of activation of phospholipase D2 (PLD2) remains undefined although mechanisms have been described for the activation of PLDI. By expression of mutated forms of haemaglutinnin-tagged PLD2 in a mast cell (RBL-2H3) line, we show that PLD2 is phosphorylated at tyrosines -11, -14, and -470 and that tyrosine-470 is critical for activation of PLD2 by antigen. Studies were performed with mutated-DNA constructs for haemaglutinnin-tagged PLD2 in which codons for tyrosine -11, -14, -165, and -470 were mutated to phenylalanine either individually or collectively. Transient expression of these constructs showed that mutation of tyrosine -11, -14, -470, or all tyrosines (all-mutated PLD2) suppressed antigen-induced tyrosine phosphorylation of PLD2 but only the tyrosine-470 mutant failed to be activated by antigen as assessed by in vitro assay of immunoprepitated PLD2 or by assay of PLD in intact cells. The critical role of tyrosine-470 was confirmed in studies with add-back mutants (phenylalanine back to tyrosine) of the all-mutated PLD. The findings provide the first description of a mechanism of activation of PLD2 in a physiological setting.

FLUORESCENT LABELLING OF MC3T3 CELL LINE BY 5-(AND-6)-CARBOXY-2', 7'-DICHLOROFLUORESCEIN DIACETATE, SUCCINIMIDYL ESTER MIXED (MC3T3 preosteoblast cell line의 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed에 의한 fluorescent labelling)

  • Kook, Min-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.461-467
    • /
    • 2005
  • Background. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed (CFSE) is the fluorescent labelling agent of living cells and used to trace the cells in vivo after transplatnation of various cells. The CFSE labelled cells can maintain fluorescence for up to 7 days after labelling. The MC3T3-E1 cell line (MC3T3) has been used for many studies about osteoblast, which is well known as a mouse preosteoblast. So the CFSE would be used to trace the transplanted MC3T3. However there are few reports about CFSE labelling of MC3T3. This study is aimed to know about adequate concenturation and incubation time of CFSE to MC3T3. Materials and methods. The MC3T3 was incubated in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ using ${\alpha}$-minimal essential medium (${alpha}$-MEM) containing10% FBS and gentamycin. Ten mM CFSE solution in dimethylsulphoxide (DMSO: 1%) was diluted with phosphate buffered saline (PBS) and final concentration of culture medium was, respectively, 5, 10, 15, 20, 25 and 30 ${{\mu}M$. Then the MC3T3 was incubated with CFSE in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ for 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes in each concentration. The fluorescence of CFSE labelled cells was analysed with a inverted fluorescence microscope. The duration of cell labelling was also studied. Trypan blue dye exclusion test was done for cell viability. Results. For concentration between 5 and 10 ${\mu}M$, CFSE did not significantly label the MC3T3 in vitro. The destruction of MC3T3 was observed at the concentration of 20 ${\mu}M$. In the concentration of 15 ${\mu}M$, the best labelling was obtained at an incubation period between 15 and 30 minutes. The MC3T3 labelled with an incubation period of 15 minutes at 15 ${\mu}M$ was still fluorescent 7 days after CFSE labelling. The mean cell viability was 95.93%. Conclusion. These results suggests an incubation period of 15 minutes at 15 ${\mu}M$ of CFSE provides best labelling of MC3T3 in vitro.

Silencing of COX-2 by RNAi Modulates Epithelial-Mesenchymal Transition in Breast Cancer Cells Partially Dependent on the PGE2 Cascade

  • Cao, Juan;Yang, Xiao;Li, Wen-Tong;Zhao, Chun-Ling;Lv, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9967-9972
    • /
    • 2014
  • In order to prove whether downregulation of COX-2 (Cyclooxygenase-2) could modulate the epithelial-mesenchymal transition (EMT) of breast cancer, celecoxib and siRNA were respectively used to inhibit COX-2 function and expression in MDA-MB-231 cells. The EMT reversal effect in the RNAi treated group was better than that of the celecoxib group while there were no obvious differences in the medium $PGE_2$ levels between the two groups. The results show that COX-2 pathways may contribute considerably to EMT of breast cancer cells, partially dependent on the PGE2 cascade. Akt2, ZEB2 and Snail were measured to clarify the underlying mechanisms of COX-2 on EMT; COX-2 may modulate EMT of breast cancer by regulating these factors. This finding may be helpful to elucidate the mechanisms of selective COX-2 inhibitor action in EMT modulation in breast cancer.

Roles of the Bcl-2/Bax Ratio, Caspase-8 and 9 in Resistance of Breast Cancer Cells to Paclitaxel

  • Sharifi, Simin;Barar, Jaleh;Hejazi, Mohammad Saeid;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8617-8622
    • /
    • 2014
  • The goal of this study was to establish paclitaxel resistant MCF-7 cells, as in vitro model, to identify the molecular mechanisms leading to acquired chemoresistance in breast cancer cells. Resistant cells were developed by stepwise increasing exposure to paclitaxel. Gene expression levels of Bax and Bcl-2 along with protein levels of caspase-8 and caspase-9 were evaluated in two resistant cell lines (MCF-7/Pac64 and MCF-7/Pac5 nM). Morphological modifications in paclitaxel resistance cells were examined by light microscopy and fluorescence activated cell sorting (FACS). As an important indicator of resistance to chemotheraputic agents, the Bcl-2/Bax ratio showed a significant increase in both MCF-7/Pac5nM and MCF-7/Pac 64nM cells (p<0.001), while caspase-9 levels were decreased (p<0.001) and caspase-8 was increased (p<0.001). FACS analysis demonstrated that MCF-7/Pac64 cells were smaller than MCF-7 cells with no difference in their granularity. Our results support the idea that paclitaxel induces apoptosis in a mitochondrial-dependent manner. Identifying breast cancer patients with a higher Bcl-2/Bax ratio and caspase 9 level and then inhibiting the activity of these proteins may improve the efficacy of chemotheraputic agents.

RNAi-based Knockdown of Multidrug Resistance-associated Protein 1 is Sufficient to Reverse Multidrug Resistance of Human Lung Cells

  • Shao, Shu-Li;Cui, Ting-Ting;Zhao, Wei;Zhang, Wei-Wei;Xie, Zhen-Li;Wang, Chang-He;Jia, Hong-Shuang;Liu, Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10597-10601
    • /
    • 2015
  • Up-regulation of multidrug resistance-associated protein 1 (MRP1) is regarded as one of the main causes for multidrug resistance (MDR) of tumor cells, leading to failure of chemotherapy-based treatment for a multitude of cancers. However, whether silencing the overexpressed MRP1 is sufficient to reverse MDR has yet to be validated. This study demonstrated that RNAi-based knockdown of MRP1 reversed the increased efflux ability and MDR efficiently. Two different short haipin RNAs (shRNAs) targeting MRP1 were designed and inserted into pSilence-2.1-neo. The shRNA recombinant plasmids were transfected into cis-dichlorodiamineplatinum-resistant A549 lung (A549/DDP) cells, and then shRNA expressing cell clones were collected and maintained. Real time PCR and immunofluorescence staining for MRP1 revealed a high silent efficiency of these two shRNAs. Functionally, shRNA-expressing cells showed increased rhodamine 123 retention in A549/DDP cells, indicating reduced efflux ability of tumor cells in the absence of MRP1. Consistently, MRP1-silent cells exhibited decreased resistance to 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and DDP, suggesting reversal of MDR in these tumor cells. Specifically, MRP1 knockdown increased the DDP-induced apoptosis of A549/DDP cells by increased trapping of their cell cycling in the G2 stage. Taken together, this study demonstrated that RNAi-based silencing of MRP1 is sufficient to reverse MDR in tumor cells, shedding light on possible novel clinical treatment of cancers.

Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules

  • Kang, Seong-Ho;Jin, Bo-Ra;Kim, Hyeon-Jin;Seo, Goo-Young;Jang, Young-Saeng;Kim, Sun-Jin;An, Sun-Jin;Park, Seok-Rae;Kim, Woan-Sub;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • It is well established that TGF-${\beta}1$ and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-${\beta}1$, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules ${\alpha}4{\beta}7$ and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells.

Expression of bcl-2 and p53 in Induction of Esophageal Cancer Cell Apoptosis by ECRG2 in Combination with Cisplatin

  • Song, Hai-Yan;Deng, Xiao-Hui;Yuan, Guo-Yan;Hou, Xin-Fang;Zhu, Zhen-Dong;Zhou, Li;Ren, Ming-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1397-1401
    • /
    • 2014
  • Aim: To investigate the mechanisms of induction of apoptosis of esophageal cancer cells by esophageal cancer-related gene 2 (ECRG2) in combination with cisplatin (DDP). Methods: Hoechest staining was performed to analyze the effects of single ECRG2 and ECRG2 in combination with DDP on apoptosis of EC9706 cells. The expression levels of p53 and bcl-2 mRNA and protein were determined by RT-PCR and Western blotting, respectively. Results: The number of apoptotic cells after the treatment with ECRG2 in combination with DDP for 24 hours was more than that after the treatment with single ECRG2. RT-PCR and Western blotting showed that the expression levels of bcl-2 mRNA and protein were both down-regulated, while p53 mRNA and protein were both up-regulated in the cells treated with ECRG2 in combination with DDP compared with those given ECRG2 alone. Conclusion: ECRG2 in combination with DDP can enhance the apoptosis of EC9706 cells, possibly by down-regulating bcl-2 expression and up-regulating p53.

Momordica cochinchinensis Seed Extracts Suppress Migration and Invasion of Human Breast Cancer ZR-75-30 Cells Via Down-regulating MMP-2 and MMP-9

  • Zheng, Lei;Zhang, Yan-Min;Zhan, Ying-Zhuan;Liu, Chang-Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1105-1110
    • /
    • 2014
  • Objective: Metastases and invasion are the main reasons for oncotherapy failure. Momordica cochinchinensis (Mu Bie Zi in Chinese) had been used for a variety of purposes, and shown anti-cancer action. In this article, we focused on effects on regulation of breast cancer cell ZR-75-30 metastases and invasion by extracts of Momordica cochinchinensis seeds (ESMCs). Methods: Effect of ESMCs on ZR-75-30 human breast cancer cells proliferation were evaluated by MTT assay and on invasion and migration by wound-healing and matrigel invasion chamber assays. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. Results: ESMC revealed strong growth inhibitory effects on ZR-75-30 cells, and effectively inhibited ZR-75-30 cell invasion in a dose-dependent manner. Western blot and gelatin zymography analysis showed that ESMC significantly inhibited the expression and secretion of MMP-2 and MMP-9 in ZR-75-30 cells. Conclusions: ESMC has the potential to suppress the migration and invasion of ZR-75-30 cancer cells, and it might prove to of interest in the development of novel inhibitors for breast cancer.

Studies on Vitrification of Bovine Blastocysts Fertilized In Vitro (소 체외수정란의 초자화 동결에 관한 연구)

  • 이명식;오성종;양보석;백광수;성환후;정진관;장원경;박수봉
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.4
    • /
    • pp.251-256
    • /
    • 1995
  • Two experiments were conducted to study the production of in vitro fertilized bovine embryos and the viability of blastocysts cryopreserved by vitrification. In experiment 1, production rate of in vitro matured bovine oocytes after fertilization in medium containing bovine oviduct epithelial cells (BOEC), cumulus cells and granulosa cells to blastocysts were 18.4, 14.6 and 13.1%, respectively. Developmental percentages of blastocysts produced at day 6, 7 and 8 were 8.5, 10.6 and 15.2% respectively. Hatching rate of bovine embryos produced was 60.0%. In experiment 2, post-thawed surviving embryos in a vitrification solution consisting of 7.15M ethylene glycol, 2.5 mM ficoll and 0.3 M sucrose were 36.4% (56/154). Also, survival rate of bovine embryos after exposed to vitrification solution at 1, 2, 3, 4 and 5 min were 84.0, 88.0, 71.0, 48.0 and 24.0% respectively.

  • PDF