• Title/Summary/Keyword: 2.2.15 cells

Search Result 3,392, Processing Time 0.04 seconds

Dihydroceramide was Highly Elevated by the Fumonisin B1 and Desipramine in Sphingomonas chungbukensis

  • Burenjargal, Munkhtsatsral;Lee, Youn-Sun;Yoo, Jae-Myung;Choi, Mi-Hwa;Ji, So-Young;Lee, Yong-Moon;Kim, Young-Chang;Oh, Sei-Kwan;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2008
  • The sphingolipid metabolites act as lipid mediator for cell proliferation and apoptosis in mammalian cells. In bacteria, sphingolipid metabolism remains unknown. The purpose of this study was to investigate whether sphingolipid metabolism is potential target for fumonisin $B_1$($FB_1$) and desipramine in Sphingomonas chungbukensis, Gram-negative bacteria, by comparing the intracellular contents of bacterial sphingolipids with ones of HIT-T15 ${\beta}$-cells, hamster pancreatic cells. The concentrations of ceramide and dihydroceramide were 18.0 ${\pm}$ 12.0 and 0.025 ${\pm}$ 0.018 nmol/mg protein, respectively, in HIT-T15 cells. However, the concentrations of ceramide and dihydroceramide in the bacterial culture were 2.0 ${\pm}$ 1.2 and 10.6 ${\pm}$ 5.5 nmol/mg protein, respectively. $FB_1$ decreased the level of ceramide from 18.0 to 3.8 nmol/mg protein in HIT-T15 ${\beta}$-cells. However, dihydroceramide content in $FB_1$-treated HIT-T15 cells was slightly decreased compared with the control culture. When S. chungbukensis was treated with either $FB_1$ or desipramine, dihydroceramide level was increased by 5- and 4-fold, respectively, compared with the control bacteria. These results indicate that $FB_1$ and desipramine may act as an activator in bacterial sphingolipid biosynthetic pathway, and bacterial sphingolipid metabolism pathway appears to be different from the pathway of mammalian cells.

Anti-proliferative Activity of T-bet

  • Oh, Yeon Ji;Shin, Ji Hyun;Won, Hee Yeon;Hwang, Eun Sook
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • T-bet is a critical transcription factor that regulates differentiation of Th1 cells from $CD4^+$ precursor cells. Since T-bet directly binds to the promoter of the IFN-${\gamma}$ gene and activates its transcription, T-bet deficiency impairs IFN-${\gamma}$ production in Th1 cells. Interestingly, T-bet-deficient Th cells also display substantially augmented the production of IL-2, a T cell growth factor. Exogenous expression of T-bet in T-bet deficient Th cells rescued the IFN-${\gamma}$ production and suppressed IL-2 expression. IFN-${\gamma}$ and IL-2 reciprocally regulate Th cell proliferation following TCR stimulation. Therefore, we examined the effect of T-bet on Th cell proliferation and found that T-bet deficiency significantly enhanced Th cell proliferation under non-skewing, Th1-skewing, and Th2-skewing conditions. By using IFN-${\gamma}$-null mice to eliminate the anti-proliferative effect of IFN-${\gamma}$, T-bet deficiency still enhanced Th cell proliferation under both Th1- and Th2-skewing conditions. Since the anti-proliferative activity of T-bet may be influenced by IL-2 suppression in Th cells, we examined whether T-bet modulates IL-2-independent cell proliferation in a non-T cell population. We demonstrated that T-bet expression induced by ecdysone treatment in human embryonic kidney (HEK) cells increased IFN-${\gamma}$ promoter activity in a dose dependent manner, and sustained T-bet expression considerably decreased cell proliferation in HEK cells. Although the molecular mechanisms underlying anti-proliferative activity of T-bet remain to be elucidated, T-bet may directly suppress cell proliferation in an IFN-${\gamma}$- or an IL-2-independent manner.

Stigmalactam from Orophea Enterocarpa Induces Human Cancer Cell Apoptosis Via a Mitochondrial Pathway

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10397-10400
    • /
    • 2015
  • Stigmalactam, an aristolactam-type alkaloid extracted from Orophea enterocarpa, exerts cytotoxicity against several human and murine cancer cell lines, but the molecular mechanisms remain elusive. The aims of this study were to identify the mode and mechanisms of human cancer cell death induced by stigmalactam employing human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells as models, compared to normal murine fibroblasts. It was found that stigmalactam was toxic to HepG2 and MDA-MB-231 cells with $IC_{50}$ levels of $23.0{\pm}2.67{\mu}M$ and $33.2{\pm}4.54{\mu}M$, respectively, using MTT assays. At the same time the $IC_{50}$ level towards murine normal fibroblast NIH3T3 cells was $24.4{\pm}6.75{\mu}M$. Reactive oxygen species (ROS) production was reduced in stigmalactam-treated cells dose dependently after 4 h of incubation, indicating antioxidant activity, measured by using 2',7',-dichlorohydrofluorescein diacetate and flow cytometry. Caspase-3 and caspase-9 activities were increased in a dose response manner, while stigmalactam decreased the mitochondrial transmembrane potential dose-dependently in HepG2 cells, using 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, indicating mitochondrial pathway-mediated apoptosis. In conclusion, stigmalactam from O. enterocarpa was toxic to both HepG2 and MDA-MB-231 cells and induced human cancer HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway.

Alteration of Ryanodine-receptors in Cultured Rat Aortic Smooth Muscle Cells

  • Kim, Eun-Ji;Kim, Dong-Kwan;Kim, Shin-Hye;Lee, Kyung-Moo;Park, Hyung-Seo;Kim, Se-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.431-436
    • /
    • 2011
  • Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic $Ca^{2+}$ response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated $Ca^{2+}$ entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the $Ca^{2+}$- induced $Ca^{2+}$ -release pathway by directly measuring $Ca^{2+}$ release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with $Ca^{2+}$ stimulated $Ca^{2+}$ release from the SR. Caffeine and ryanodine also induced $Ca^{2+}$ release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and $Ca^{2+}$ failed to trigger $Ca^{2+}$ release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate $Ca^{2+}$ release from the SR by cytosolic $Ca^{2+}$ elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

An Atopic Preventive Drink (APD) reduces Th2 cytokines in LPS-treated RAW 264.7 cells

  • Song, Gyl-Hoon;Park, Eui-Seong;Lee, Seung-Min;Kim, Tae-Young;Park, Kun-Young
    • CELLMED
    • /
    • v.7 no.3
    • /
    • pp.15.1-15.6
    • /
    • 2017
  • We analyzed the effects of an Atopic Preventive Drink (APD) on the regulation of Th2 cytokines using RAW 264.7 macrophage cells. In the evaluation of nitric oxide (NO) production in cells, NO production levels were shown to be elevated only in the APD-treated group in a dose-dependent manner. In the lipopolysaccharide (LPS) with APD-treated group, NO production significantly decreased as APD concentration increased. Further, mRNA expression levels and protein concentrations of pro-inflammatory cytokines in cells were determined. Th2 stimulatory cytokine ($IL-1{\beta}$) and Th2 cytokine (IL-6 and IL-10) levels were significantly reduced in the LPS with APD-treated group compared to the only LPS-treated group. mRNA expression levels of inflammatory-related genes (COX-2 and iNOS) were significantly reduced in the LPS with APD-treated group compared to the only LPS-treated group. These results suggest that APD has an anti-atopic effect by reducing mRNA and proteins expressions of Th2 cytokines and inflammatory-related genes.

Expression of the ATP-gated $P2X_7$ Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Interactions between microbes and epithelial cells in the gastrointestinal tract are closely associated with regulation of intestinal mucosal immune responses. Recent studies have highlighted the modulation of mucosal immunity by microbe-derived molecules such as ATP and short-chain fatty acids. In this study, we undertook to characterize the expression of the ATP-gated $P2X_7$ receptor ($P2X_7R$) on M cells and its role in gastrointestinal mucosal immune regulation because it was poorly characterized in Peyer's patches, although purinergic signaling via $P2X_7R$ and luminal ATP have been considered to play an important role in the gastrointestinal tract. Here, we present the first report on the expression of $P2X_7R$ on M cells and characterize the role of $P2X_7R$ in immune enhancement by ATP or LL-37.

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

Cryptotanshinone Induces Inhibition of Breast Tumor Growth by Cytotoxic CD4+ T Cells through the JAK2/STAT4/ Perforin Pathway

  • Zhou, Jun;Xu, Xiao-Zhen;Hu, Yao-Ren;Hu, Ai-Rong;Zhu, Cheng-Liang;Gao, Guo-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2439-2445
    • /
    • 2014
  • Cryptotanshinone (CPT), is a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miotiorrhiza bunge. Numerous researchers have found that it could work as a potent antitumor agent to inhibit tumor growth in vitro, buith there has been much less emphasis on its in vivo role against breast tumors. Using a mouse tumor model of MCF7 cells, we showed that CPT strongly inhibited MCF7 cell growth in vivo with polarization of immune reactions toward Th1-type responses, stimulation of naive CD4+ T cell proliferation, and also increased IFN-${\gamma}$ and perforin production of CD4+ T cells in response to tumor-activated splenocytes. Furthermore, data revealed that the cytotoxic activity of CD4+ T cells induced by CPT was markedly abrogated by concanamycin A(CMA), a perforin inhibitor, but not IFN-${\gamma}$ Ab. On the other hand, after depletion of CD4+ T cells or blocked perforin with CMA in a tumor-bearing model, CPT could not effectively suppress tumor growth, but this phenomenon could be reversed by injecting naive CD4+ T cells. Thus, our results suggested that CPT mainly inhibited breast tumor growth through inducing cytotoxic CD4+ T cells to secrete perforin. We further found that CPT enhanced perforin production of CD4+ T cells by up-regulating JAK2 and STAT4 phosphorylation. These findings suggest a novel potential therapeutic role for CPT in tumor therapy, and demonstrate that CPT performs its antitumor functions through cytotoxic CD4+ T cells.

Angiopoietin-1 Is An Radiation-induced Apoptosis Survival Factor for Human Umbilical Vein Endothelial Cells (방사선을 조사한 혈관내피세포에 대한 Angiopoietin-1의 방사선 방어 기작)

  • Lee, Song-Jae;Chang, Chae-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.166-173
    • /
    • 2000
  • Angiopoietin-1(Ang-1) is a vasculogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. We examined the effect of angiopoietin-1(Ang-1) on radiation-induced apoptosis in human umbilical vein endothelial cells(HUVECS) and receptor/second messenger signal transduction pathway for Ang-1's effect on HUVECs. The percent of apoptotic cells under control condition(0Gy) was $8.2\%$. Irradiation induced apoptosis was increased in a dose(1, 5, 10, and 15Gy)- and time 12, 24, 48 and 72hr)-dependent manner. The percent of apoptotic cells was approximately $34.9\%$ after 15 Gy of irradiation. Under these conditions, pretreatment with Ang-1's (50, 100, 200, and 400 ng/ml) inhibited irradiation-induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner. Two hundred ng/ml of Ang-1 inhibited approximately $55-60\%$ of the apoptotic events that occurred in the 10 Gy-irradiated cells. Pre-treatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang-1's antiapoptotic effects. Phosphatidylinositol 3'-kinase (P13-kinase) specific inhibitor, wortmanin and LY294002, blocked the Ang-1-induced antiapoptotic effect. Ang-1 promotes the survival of endothelial cells in irradiation-induced apoptosis through Tie2 receptor binding and P13-kinase activation. Pretreatment of Ang-1 could be beneficial in maintaining normal endothelial cell integrity during irradiation therapy.

  • PDF