• Title/Summary/Keyword: 2-vertex connected graphs

Search Result 26, Processing Time 0.024 seconds

THE SPECTRAL DETERMINATIONS OF THE JOIN OF TWO FRIENDSHIP GRAPHS

  • Abdian, Ali Zeydi;Moez, Amirhossein Morovati
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.67-87
    • /
    • 2019
  • The main aim of this study is to characterize new classes of multicone graphs which are determined by their adjacency spectra, their Laplacian spectra, their complement with respect to signless Laplacian spectra and their complement with respect to their adjacency spectra. A multicone graph is defined to be the join of a clique and a regular graph. If n is a positive integer, a friendship graph $F_n$ consists of n edge-disjoint triangles that all of them meet in one vertex. It is proved that any connected graph cospectral to a multicone graph $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ is determined by its adjacency spectra as well as its Laplacian spectra. In addition, we show that if $n{\neq}2$, the complement of these graphs are determined by their adjacency spectra. At the end of the paper, it is proved that multicone graphs $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ are determined by their signless Laplacian spectra and also we prove that any graph cospectral to one of multicone graphs $F_n{\nabla}F_n$ is perfect.

CERTAIN GENERALIZED THORN GRAPHS AND THEIR WIENER INDICES

  • Kathiresan, KM.;Parameswaran, C.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.793-807
    • /
    • 2012
  • If G is any connected graph of order p; then the thorn graph $G_p^*$ with code ($n_1$, $n_2$, ${\cdots}$, $n_p$) is obtained by adding $n_i$ pendent vertices to each $i^{th}$ vertex of G. By treating the pendent edge of a thorn graph as $P_2$, $K_2$, $K_{1,1}$, $K_1{\circ}K_1$ or $P_1{\circ}K_1$, we generalize a thorn graph by replacing $P_2$ by $P_m$, $K_2$ by $K_m$, $K_{1,1}$ by $K_{m,n}$, $K_1{\circ}K_1$ by $K_m{\circ}K_1$ and $P_1{\circ}K_1$ by $P_m{\circ}K_1$ and their respective generalized thorn graphs are denoted by $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ respectively. Many chemical compounds can be treated as $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ of some graphs in graph theory. In this paper, we obtain the bounds of the wiener index for these generalization of thorn graphs.

ON A CLASS OF QUASILINEAR ELLIPTIC EQUATION WITH INDEFINITE WEIGHTS ON GRAPHS

  • Man, Shoudong;Zhang, Guoqing
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.857-867
    • /
    • 2019
  • Suppose that G = (V, E) is a connected locally finite graph with the vertex set V and the edge set E. Let ${\Omega}{\subset}V$ be a bounded domain. Consider the following quasilinear elliptic equation on graph G $$\{-{\Delta}_{pu}={\lambda}K(x){\mid}u{\mid}^{p-2}u+f(x,u),\;x{\in}{\Omega}^{\circ},\\u=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}^{\circ}$ and ${\partial}{\Omega}$ denote the interior and the boundary of ${\Omega}$, respectively, ${\Delta}_p$ is the discrete p-Laplacian, K(x) is a given function which may change sign, ${\lambda}$ is the eigenvalue parameter and f(x, u) has exponential growth. We prove the existence and monotonicity of the principal eigenvalue of the corresponding eigenvalue problem. Furthermore, we also obtain the existence of a positive solution by using variational methods.

ON THE MINIMUM ORDER OF 4-LAZY COPS-WIN GRAPHS

  • Sim, Kai An;Tan, Ta Sheng;Wong, Kok Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1667-1690
    • /
    • 2018
  • We consider the minimum order of a graph G with a given lazy cop number $c_L(G)$. Sullivan, Townsend and Werzanski [7] showed that the minimum order of a connected graph with lazy cop number 3 is 9 and $k_3{\square}k_3$ is the unique graph on nine vertices which requires three lazy cops. They conjectured that for a graph G on n vertices with ${\Delta}(G){\geq}n-k^2$, $c_L(G){\leq}k$. We proved that the conjecture is true for k = 4. Furthermore, we showed that the Petersen graph is the unique connected graph G on 10 vertices with ${\Delta}(G){\leq}3$ having lazy cop number 3 and the minimum order of a connected graph with lazy cop number 4 is 16.

CLASSIFICATION OF TWO-REGULAR DIGRAPHS WITH MAXIMUM DIAMETER

  • Kim, Byeong Moon;Song, Byung Chul;Hwang, Woonjae
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.247-254
    • /
    • 2012
  • The Klee-Quaife problem is finding the minimum order ${\mu}(d,c,v)$ of the $(d,c,v)$ graph, which is a $c$-vertex connected $v$-regular graph with diameter $d$. Many authors contributed finding ${\mu}(d,c,v)$ and they also enumerated and classied the graphs in several cases. This problem is naturally extended to the case of digraphs. So we are interested in the extended Klee-Quaife problem. In this paper, we deal with an equivalent problem, finding the maximum diameter of digraphs with given order, focused on 2-regular case. We show that the maximum diameter of strongly connected 2-regular digraphs with order $n$ is $n-3$, and classify the digraphs which have diameter $n-3$. All 15 nonisomorphic extremal digraphs are listed.

EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS

  • ASHRAFI, ALI REZA;DEHGHAN-ZADEH, TAYEBEH;HABIBI, NADER
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.283-295
    • /
    • 2015
  • The atom-bond connectivity index of a graph G (ABC index for short) is defined as the summation of quantities $\sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}}$ over all edges of G. A cactus graph is a connected graph in which every block is an edge or a cycle. The aim of this paper is to obtain the first and second maximum values of the ABC index among all n vertex cactus graphs.

ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR GRAPHS OF THE RING ℤn

  • Pirzada, S.;Rather, Bilal A.;Shaban, Rezwan Ul;Merajuddin, Merajuddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • For a finite commutative ring R with identity 1 ≠ 0, the zero divisor graph ��(R) is a simple connected graph having vertex set as the set of nonzero zero divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find the signless Laplacian spectrum of the zero divisor graphs ��(ℤn) for various values of n. Also, we find signless Laplacian spectrum of ��(ℤn) for n = pz, z ≥ 2, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor graph ��(ℤn) are signless Laplacian integral.

ON THE MONOPHONIC NUMBER OF A GRAPH

  • Santhakumaran, A.P.;Titus, P.;Ganesamoorthy, K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.255-266
    • /
    • 2014
  • For a connected graph G = (V,E) of order at least two, a set S of vertices of G is a monophonic set of G if each vertex v of G lies on an x - y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G, denoted by m(G). Certain general properties satisfied by the monophonic sets are studied. Graphs G of order p with m(G) = 2 or p or p - 1 are characterized. For every pair a, b of positive integers with $2{\leq}a{\leq}b$, there is a connected graph G with m(G) = a and g(G) = b, where g(G) is the geodetic number of G. Also we study how the monophonic number of a graph is affected when pendant edges are added to the graph.

The Four Color Algorithm (4-색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes an algorithm that proves an NP-complete 4-color theorem by employing a linear time complexity where $O(n)$. The proposed algorithm accurately halves the vertex set V of the graph $G=(V_1,E_1)$ into the Maximum Independent Set (MIS) $\bar{C_1}$ and the Minimum Vertex Cover Set $C_1$. It then assigns the first color to $\bar{C_1}$ and the second to $\bar{C_2}$, which, along with $C_2$, is halved from the connected graph $G=(V_2,E_2)$, a reduced set of the remaining vertices. Subsequently, the third color is assigned to $\bar{C_3}$, which, along with $C_3$, is halved from the connected graph $G=(V_3,E_3)$, a further reduced set of the remaining vertices. Lastly, denoting $C_3$ as $\bar{C_4}$, the algorithm assigns the forth color to $\bar{C_4}$. The algorithm has successfully obtained the chromatic number ${\chi}(G)=4$ with 100% probability, when applied to two actual map and two planar graphs. The proposed "four color algorithm", therefore, could be employed as a general algorithm to determine four-color for planar graphs.

Hamiltonian Paths in Restricted Hypercube-Like Graphs with Edge Faults (에지 고장이 있는 Restricted Hypercube-Like 그래프의 해밀톤 경로)

  • Kim, Sook-Yeon;Chun, Byung-Tae
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.225-232
    • /
    • 2011
  • Restricted Hypercube-Like (RHL) graphs are a graph class that widely includes useful interconnection networks such as crossed cube, Mobius cube, Mcube, twisted cube, locally twisted cube, multiply twisted cube, and generalized twisted cube. In this paper, we show that for an m-dimensional RHL graph G, $m{\geq}4$, with an arbitrary faulty edge set $F{\subset}E(G)$, ${\mid}F{\mid}{\leq}m-2$, graph $G{\setminus}F$ has a hamiltonian path between any distinct two nodes s and t if dist(s, V(F))${\neq}1$ or dist(t, V(F))${\neq}1$. Graph $G{\setminus}F$ is the graph G whose faulty edges are removed. Set V(F) is the end vertex set of the edges in F and dist(v, V(F)) is the minimum distance between vertex v and the vertices in V(F).