• Title/Summary/Keyword: 2-tuple linguistic model

Search Result 2, Processing Time 0.019 seconds

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

Extended cognitive reliability and error analysis method for advanced control rooms of nuclear power plants

  • Xiaodan Zhang;Shengyuan Yan;Xin Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3472-3482
    • /
    • 2024
  • This study proposes a modified extended cognitive reliability and error analysis method (CREAM) for achieving a more accurate human error probability (HEP) in advanced control rooms. The traditional approach lacks failure data and does not consider the common performance condition (CPC) weights in different cognitive functions. The modified extended CREAM decomposes tasks using a method that combines structured information analysis (SIA) and the extended CREAM. The modified extended CREAM performs the weight analysis of CPCs in different cognitive functions, and the weights include cognitive, correlative, and important weights. We used the extended CREAM to obtain the cognitive weight. We determined the correlative weights of the CPCs for different cognitive functions using the triangular fuzzy decision-making trial and evaluation laboratory (TF-DEMATEL), and evaluated the importance weight of CPCs based on the interval 2-tuple linguistic approach and ensured the value of the importance weight using the entropy method in the different cognitive functions. Finally, we obtained the comprehensive weights of the different cognitive functions and calculated the HEPs. The accuracy and sensitivity of the modified extended CREAM were compared with those of the basic CREAM. The results demonstrate that the modified extended CREAM calculates the HEP more effectively in advanced control rooms.