• Title/Summary/Keyword: 2-stage cycle

Search Result 933, Processing Time 0.04 seconds

Analysis of Heating and Desalination Cycle Using Low Temperature Seawater (저온 해수를 이용한 난방 및 담수화사이클 성능 해석)

  • Lee, H.S.;Lee, S.W.;Jung, D.H.;Moon, D.S.;Kim, H.J.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.301-306
    • /
    • 2011
  • The paper presents an analysis of the heating cycle and discusses a desalination cycle that uses lowtemperature seawater. The basic heating cycle model is the heat pump cycle, and seawater desalination is usually performed by the indirect freezing desalination method. The low temperature of the seawater (below $5^{\circ}C$) acts as the heat source of the evaporator. R-134a, R-1234yf, R-600a are used as working fluids. In the 2-stage compression cycle, the compressor's work decreased by about 15.6% from that in the 1-stage compression cycle. Further, the COP in the 2-stage cycle was 17.6% higher than that in the 1-stage cycle. In the indirect desalination cycle, the energy per unit fresh water productivity in the 2-stage cycle was 19.8% lower than that in the 1-stage cycle.

Experimental Study on the Cooling Performance Improvement of a Two-stage Compression $CO_2$ Cycle (2단압축 이산화탄소 사이클의 냉방성능 향상 특성에 대한 실험적 연구)

  • Cho Hong-Hyun;Lee Ho-Seong;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.835-841
    • /
    • 2006
  • A $CO_2$ system using the two-stage compression cycle was tested by varying $1^{st}-2^{nd}$ compressor frequencies in the cooling mode. To improve the cooling performance of the two-stage compression $CO_2$ cycle, the following cycle options were applied: a basic cycle, a cycle with an intercooler, a cycle with an IHX (internal heat exchanger), and a cycle with an intercooler and IHX. The cycle with the intercooler-IHX showed the highest cooling capacity improvement among the cycle options at all compressor frequencies. The cycle with the intercooler, the cycle with the IHX, and the cycle with the intercooler-IHX improved the cooling COP by 7, 12, and 15%, respectively, over the basic $CO_2$ cycle when the compressor frequencies for the first and second compressors were 50 Hz and 30 Hz, respectively. In addition, the applications of the selected cycle options enhanced system reliability.

Simulation of a two-stage absorption heat pump cycle using treated sewage (하수처리수 이용 흡수식 열펌프 사이클의 시뮬레이션)

  • 이용화;신현준;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.422-430
    • /
    • 1999
  • This paper concerns the study of a two-stage absorption heat pump cycle to utilize treated sewage. This two-stage cycle consists of coupling double-effect with parallel or series flow type and single effect cycle so that the first stage absorber and condenser produces hot water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as absorber temperature on the coefficient of performance have been studied for two-stage absorption heat pump cycle. The working fluid is lithium bromide and water solution. The efficiency of the two-stage absorption heat pump cycle has been studied and simulation results show that higher coefficient of performance could be obtained for the first stage with parallel flow type. The optimum ratio of solution distribution can be shown by considering the COP, the crystallization of solution and the generator temperature.

  • PDF

Experimental Study on the Variation of the optimal charge with cycle option in the $CO_2$ Refrigeration (이산화탄소 냉동사이클에서 사이클 사양에 따른 최적충전량 변화에 관한 실험적 연구)

  • Cho, Hong-Hyun;Ryu, Chang-Gi;Lee, Ho-Seong;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.398-403
    • /
    • 2005
  • The cooling performance of a transcritical $CO_2$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_2$ system was measured and analyzed by varying refrigerant charge amount with a change of cycle option. The applied cycle options are the single-stage compression system, two-stage compression with 1-EEV system, and two-stage compression with 2- EEV system. The optimum normalized charge were 0.363, 0.297, and 0.282 for the two-stage compression with 2-EEV system, two-stage compression with 1-EEV system, and single-stage compression system, respectively.

  • PDF

Simulation Study on the Performance Improvement of a $CO_2$ System Applying a Two-stage Phase-separate Cycle (2단압축 상분리 사이클을 적용한 이산화탄소 시스템의 성능향상에 관한 해석적 연구)

  • Ryu Chang-Gi;Lee Ho-Seong;Kim Yong-Chan;Cho Hong-Hyun;Cho Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.641-648
    • /
    • 2006
  • In this study, a two-stage phase-separate cycle was investigated analytically to improve the performance of the $CO_2$ system in the cooling mode. The simulation results were verified with the measured data. The predictions using the simulation model were consistent with the measured data within ${\pm}20%$ deviations. The performance of the modified $CO_2$ system with the two-stage phase-separated cycle was analyzed with the variations of outdoor temperature and EEV opening. The cooling COP decreased with the increase of compressor frequency. The highest COP was 2.7 at compressor frequencies of 30 Hz and 30 Hz for the first and second compressors, respectively. In addition, the cooling COP increased by 9.3% with an application of optimum control of the first and second-stage EEV openings.

A Study on DC-Link Current Ripple of Multi-Phase/Multi-Stage Boost Converter (다상/다단 부스트 컨버터의 DC-Link 리플 전류 분석)

  • Seung-Min Kim;Dong-Hee Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • This paper explores the variation of DC-Link current ripple analysis in terms of duty cycle and phase angle of Multi-phase/Multi-stage boost converter. A 2-Stage/1-Stage boost converter DC-Link current is used to determine the difference between the 1st stage diode current and the 2nd stage inductor current. Each stage boost converter diode and inductor current is subordinate to the phase angle and duty cycle. The magnitude of the ripple current is variable according to phase angle and duty cycle. The analysis results are verified by variation of DC-Link current ripple using a 1kW typical 2-stage/1-stage boost converter.

Quantitative Analysis of Gartner's "Hype Cycle for Emerging Technologies" (가트너 "부상하는 기술을 위한 Hype Cycle"의 정량적 분석)

  • Park, Yoo-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1041-1048
    • /
    • 2018
  • Gartner's Hype Cycle model is widely used to describe technology maturity, acceptability, and commercialization. In the Hype Cycle model, the techniques go through five stages, those are Innovation Trigger(first stage), stage Peak of Inflated Expectations(second stage), Trough of Disillusionment(third stage), Slope of Enlightenment(fourth stage) and Plateau of Productivity(fifth stage). In many studies, Hype Cycle is widely used as a basis for future prediction of technology, but the verification is somewhat lacking. In this paper, we analyzed the technologies that appeared in the Hype Cycle for the emerging technologies from 1995 to 2017. Through this, we found technologies that appeared as non first stage when first appearing, and techniques that showed a reversal of the maturity stage. In addition, we found that none of the technologies from 1995 to 2017 had gone through stages 1-5.

Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat (액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.188-192
    • /
    • 2019
  • Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

$CO_2$ Reduction Effect Analysis of Modal Shift from Road to Rail using Life Cycle Thinking (전과정을 고려한 도로-철도 Modal Shift $CO_2$ 저감효과 분석)

  • Kim, Cho-Young;Lee, Cheul-Kyu;Choi, Yo-Han;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2921-2927
    • /
    • 2011
  • Modal Shift from road to rail has been adapted in several countries as one of effective ways of reducing $CO_2$ emissions caused by transport. Generally, effect analysis of $CO_2$ reduction toward modal shift is calculated mainly from use stage and less consideration from other stages of life cycle, even though, in some case of modal shift needs that new line construction or new vehicle manufacturing. In this study, modal shift effect analysis is performed with considering construction, manufacturing vehicle and use stage. As a result we can get total $CO_2$ reduction effect using life cycle thinking and check the necessity of including other life cycle stage not only considering use stage. In conclusion, there is no $CO_2$ reduction effect if the reduction amount of $CO_2$ in use stage is not bigger than allocated annual amount of $CO_2$ in construction and manufacturing vehicle stage. According to this fact, analysing $CO_2$ reduction effect of Modal Shift should be considered not only the use stage.

  • PDF

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.