• Title/Summary/Keyword: 2-spot Welding

Search Result 194, Processing Time 0.023 seconds

Effects of Tool Speed on Joining Characteristics during Friction Stir Spot Welding of Mg-alloy(AZ31B) Sheet (마그네슘합금(AZ31B) 판재의 마찰교반 점용접시 접합특성에 미치는 툴 속도의 영향)

  • Shin, Hyung-Seop;Jung, Yoon-Chul;Choi, Kwang
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this study, the friction stir spot welding (FSSW) of Mg alloy sheets has been tried using an apparatus devised with a CNC milling machine to give the precise control of joining condition including tool speed. The probe tool used is made of hard metal and composed of cylindrical shoulder and pin parts. The variation of morphologies formed after the friction stir spot welding depending on the plunge speed of the tool were investigated at each rpm of tool. The history of the temperature distribution and the vertical load induced during the spot welding with friction time were measured by using an Infrared Thermal Imager (THERMA CAMTM SC2000) and a loadcell located below the specimen fixture, respectively. Tensile-shear tests were also performed to evaluate the fracture load of welded specimens. In order to characterize the friction stir spot welding of Mg alloy sheets, the variation of the fracture load was discussed on micrographic observations, temperature distribution during the FSSW according to the plunge speeds of tool.

Experimental Investigation of Laser Spot Welding of Ni and Au-Sn-Ni Alloy

  • Lee, Dongkyoung
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • Many microelectronic devices are miniaturizing the capacitance density and the size of the capacitor. Along with this miniaturization of electronic circuits, tantalum (Ta) capacitors have been on the market due to its large demands worldwide and advantages such as high volumetric efficiency, low temperature coefficient of capacitance, high stability and reliability. During a tantalum capacitor manufacturing process, arc welding has been used to weld base frame and sub frame. This arc welding may have limitations since the downsizing of the weldment depends on the size of welding electrode and the contact time may prevent from improving productivity. Therefore, to solve these problems, this study applies laser spot welding to weld nickel (Ni) and Au-Sn-Ni alloy using CW IR fiber laser with lap joint geometry. All laser parameters are fixed and the only control variable is laser irradiance time. Four different shapes, such as no melting upper workpiece, asymmetric spherical-shaped weldment, symmetric weldment, and, excessive weldment, are observed. This shape may be due to different temperature distribution and flow pattern during the laser spot cutting.

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method ($CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

Fatigue Design of Spot Welded Lap Joint Considered Residual Stress (잔류응력을 고려한 점용접이음재의 피로설계)

  • Son, Il-Seon;Bae, Dong-Ho;Hong, Jeong-Gyun;Lee, Beom-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets (중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

The Effect of Spot Welding on the Stiffness of Closed Thin-Walled Members (점용접부가 폐단면 박판 부재의 강성에 미치는 영향)

  • Park Yong Kuk;Kim Jin Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.194-201
    • /
    • 2005
  • For engineers in the industry, this study considers a reliable and practical finite element modeling technique to estimate the behavior of closed thin-walled members with spot weldings. Dynamic and static experiments confirm that the technique - modeling the spot weldings with solid elements which have the adjusted rotational freedoms and fill the welding space - Yields satisfactory results. Numerical studies on the double hat-shaped members. adopting this modeling technique. show the effect of the spot welding Pitch and the spot welding location in the flange on the stiffness of the members Using the principal stiffness and newly proposed GSPI(global stiffness performance index), we also carefully examine how the spot welding curvature, and sectional shape, etc.. synthetically influence the stiffness of a real excavator pillar in the field.

Effect of some welding parameters on nugget size in electrical resistance spot welding

  • Savas, Omer
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.345-355
    • /
    • 2015
  • In this study, the effects of weld parameters on nugget size and tensile-shear strength of welding joint in electrical resistance spot welding of galvanized DP 600 steel sheets having 1.2 mm were investigated. Taguchi design method has been employed to examine the effects of five parameters of welding current, electrode pressure, welding time, clamping time and holding time by using the $L_{27}(5^3)$ orthogonal array. Results showed that the most effective parameters on tensile shear strength and the nugget size ratio (hn/dn) were found as welding current and welding time, whereas electrode pressure, clamping time and holding time were less effective factors. Max. 545 MPa strength was obtained through proposed optimum conditions by Taguchi technique.