• Title/Summary/Keyword: 2-spot Welding

Search Result 194, Processing Time 0.025 seconds

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube (정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격)

  • Lee, Hyung-Yil;Kim, Bum-Joon;Han, Byoung-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2703-2714
    • /
    • 2002
  • In this work, energy absorption characteristics and optimal welding space of spot-welded square hat type tube are investigated via quasi-static crush experiments and finite element (FE) analyses. A FE model reflecting the crush characteristics is established based on the experimentally observed crush mechanisms of specimens with welding spaces (20, 30 & 45 mm) and (25,40 & 55 mm) respectively for two specimen widths (60, 75 mm). The established FE model is then applied to other crush models of widths (50, 60 & 75 mm) with various welding spaces (20, 25, 30, 40, 45, 55, 75, 150, 300 mm) respectively. We examine the energy absorption characteristics with respect to the welding space for each specimen width. The outcome suggests an optimal spot welding space of square hat type thin-walled tube. Energy absorption is also presented in terms of yield strength of base metal, specimen thickness, width, and mean crushing force of spot-welded square hat type thin-walled tube.

Evaluation and solution of noise making weldment in automotive body (차체 이음 유발 용접 불량에 대한 분석과 해결 방안)

  • Cho, Jungho;Lee, Jungjae;Bae, Seunghwan;Lee, Yongki;Park, Kyungbae;Kim, Yongjun;Moon, Semin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.18-22
    • /
    • 2015
  • The importance of emotional quality of car is getting higher in these days. Noise takes great portion in emotional quality because it is detectable problem with just a few rides. The sources of car noise during operation are various and the related technical issues are vast. Sometimes weldments of auto body are referred as the source of noise and the suspicious weldment shows unsatisfactory welding quality in most cases. In this research, cases of noise making weldments are investigated to figure out the solution for welding quality improvement. They are categorized into several groups in according to the inferred types of the error source then appropriate solutions are suggested. Auto body has weldments of resistance spot welding and gas metal arc welding in general. Therefore the solutions are suggested as adjustment of welding process variables and related machineries. Inevitable error source is also referred which is originated from thermal expansion rate difference between ultra high strength steel and mild steel. This new approach is validated through simple calculation then more concrete investigation with numerical analysis is remained as further works to be done.

A study on the Fatigue Life Prediction Method of the Spot-welded Lap Joint (점용접이음재의 피로수명 예측기법에 관한 연구)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.110-118
    • /
    • 2000
  • For reasonable fatigue design and estimation of fatigue durability considered fatigue strength and stiffness of the automotive body structure, many fatigue data must be insured according to the shapes, materials, and welding conditions of the spot welded lap joints. However, because it is actually difficult problem, there is need to establish a new method to be able to predict its fatigue life without any additional fatigue tests. Therefore, In order to improve such problems, in this study, the maximum stress function presenting the $\delta\sigma_{1max}―\delta P$ relation was defined form the relation between $\delta\sigma_{1max}-N_f$ and ${\delta}P-N_f$. By using the fatigue data on the IB type spot-welded lap joints previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint having a certain dimension was tried to predict without any additional fatigue tests. And, its result was verified by ${\delta}P-$N_f$ curves. Obtained conclusion are as follows, 1) a maximum stress function considered the relation of the maximum principal stress, fatigue load, and the effects of geometrical factors of the IB type spot-welded lap joint was suggested. 2) the fatigue life predicted by the maximum principal stress function and the relation of $\delta\sigma_{1max}-N_f$ was well agreed with the fatigue life obtained through the actual fatigue test result. 3) the fatigue life of the IB type spot-welded lap joint having a certain dimension is able to be predicted without any additional fatigue tests from the fatigue life prediction method by the maximum principal stress function.

  • PDF

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

$CO_2$ Laser Beam Welding and Formability of Steel Plates with Different Thicknesses (이종두께 강판의 $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Kim, J.O.;Lee, Y.S.
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 1996
  • The maximum butt-joint gap size in $CO_2$ laser beam welding of SAPH steel plates with different thicknesses and its bending formability were studied. In the range of the gap size$\geq$0.1mm, the optimal butt welding speed was faster than that of no gap (air gap) condition. This behaviour was independent on the difference of thickness at any combination. Also, the allowable gap size in steel plates with different thicknesses was larger than with same thicknesses. In the range of $T/T_0$(bead shape) $\geq$ 0.8, good bending formability was obtained at any combination of thickness. The formability was improved by reducing the hardness in weld bead using pre-heating process. Finally, FEM result of the laser beam welded underframe with different thicknesses was compared to that of the conventional spot welded underframe.

  • PDF

Airborne Concentrations of Welding Fume and Metal Components by Type of Welding (용접작업 형태별 공기중 용접흄 농도와 금속 성분에 관한 조사연구)

  • Lee, Kwon Sup;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1994
  • This study was conducted to evaluate worker exposure to welding fume in automobile body shop and to evaluate metal components by type of welding. The results are summarized as follows: 1. Average concentrations of total welding fume without and with ventilation were $5.2mg/m^3$ and $2.49mg/m^3$, respectively. Thus, the average reduction rate of total fume by ventilation was 52.1 %. 2. The highest fume concentration was indicated at shielded arc welding, followed by $CO_2$ gas welding, argon arc welding, and spot welding in order of decreasing concentration. 3. Average respirable fume concentrations without and with ventilation were $2.97mg/m^3$ and $1.64mg/m^3$, respectively. 4. Further analysis of welding fume indicated that total fume consisted of $Fe_2O_3$, ZnO, Mn, Pb, and CuO, in order of decreasing amount. Combined effect of metals was below the American Conference of Governmental Industrial Hygienists (ACGIH)Threshold Limit Values (TLVs).

  • PDF

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

自動車 分野에서의 熔接技術 應用現況

  • 박황호
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.107-116
    • /
    • 1992
  • 자동차 공업에서의 용접은 주로 차체조립공정에서 많은 사용되고 있으며 전기저항용접, ARC 용접, GAS용접등이 쓰이고 있지만 특히 전기저항용접의 SPOT WELDING이 그 대부분을 차 지하고 있다. 자사의 경우 AUTO GUN이나 ROBOT의 적용으로 차종에 따라 자동화가 거의 90%에 이르며 이 수치는 향후 더욱 증가 되리라 본다. 최근의 연비향상을 위한 경량화와 장 기방청성 요구추세에 따른 새로운 소재 즉 Al, 2층도금강판등의 채택에 따라 자사실정에 맞는 적합한 용접기술개발이 필요하다. 본론에서는 점용접의 검사 방법과 검사기준, 용접 신뢰성 확 보를 위한 제시도와 신소재 적용에 대응한 개발의 필요성, 용접 자동화등의 현황들을 자사를 중심으로 실례를 들어 소개하고자 한다.

  • PDF

Resistance spot welding of aluminum alloys (알루미늄 합금의 저항 점용접)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 1990
  • 본 고에서는 알루미늄 점용접시의 용접품질 및 용접봉 수명에 미치는 요소와 점용접부 설계방법에 대하여 간략히 설명하였다. 점 용접방법은 알루미늄 뿐만 아니라 steel의 박판용접에도 많이 사용되고 있으며, 특히 최근 공정자동화에 맞추어 가장 쉽게 자동화할 수 있는 용접 방법 중의 하나이다. 그러나 아직까지는 용접품질을 보증할 수 있는 비파괴 검사방법이 없기 때문에 새로운 비파괴 검사방법 개발 혹은 컴퓨터를 이용한 용접품질 추적방법에 대한 많은 연구가 요청된다. 한편 용접부 설계 관점에서는 조그만 단순 시편이 아닌 설계구조물을 이용한 용접강도 해석방법에 대한 연구가 미약하므로 이에 대한 많은 연구도 요청되고 있다.

  • PDF