• Title/Summary/Keyword: 2-phase model

Search Result 2,331, Processing Time 0.05 seconds

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning (공조용 1마력급 2상 BLDC 팬모터의 설계 및 구현에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.757-764
    • /
    • 2018
  • This paper describes the design and implementation of a 1hp class two-phase type BLDC fan motor used in an air conditioning system. The BLDC motor, which is implemented in this study, is not a commutator motor type with excellent lifetime and durability and is driven by two phase power source. The most important target specification of a motor used in an air conditioning system is that it has a high efficiency at the rated operating point. For this purpose, we designed the stator shape of the BLDC motor, the design of the rotor magnet, and the control circuit for driving. The BLDC motor has a structure where the motor part, the control part, and the power part are integrated. The finite element analysis was used to calculate the characteristics of the BLDC motors, and the conformity of the design results was confirmed by fabricating and testing the prototype model.

Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber (미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석)

  • Sumon, S.M.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

Performance Analysis of Adaptive System Using MPSK and MQAM for Rayleigh Fading Channel (레일리 페이딩 채널에서 MPSK와 MQAM을 이용한 적응적 시스템의 성능 분석)

  • 문재경;김재원;최송인;하영호;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.782-790
    • /
    • 1999
  • In this paper, we propose an adaptive trellis-coded Multiple Quadrature Amplitude Modulation(ATCMQAM) applying MQAM as the modulation scheme in the conventional ATCMPSK (Adaptive trellis-Coded Multiple Phase Shift Keying) for slowly varying Rayleigh fading channels. The proposed system adaptively controls the coding rate combined with modulation level of pragmatic approach to trellis-coded modulation according to the instantaneous fading channel conditions, and employs MQAM as modulation scheme.Results by computer simulation show that the proposed adaptive model using MQAM can realize higher quality transmission with the improvement more than 0.5 ~ 1bit in average bit rate. And there is a coding gain of 2-5dB, depending on the high SNR value, compared with the conventional adaptive model employing MPSK.

  • PDF

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

New parametric approach to decomposition of disk averaged spectra of potential extra terrestrial planet I. Surface type ratio of the Earth

  • Ryu, Dong-Ok;Seong, Se-Hyun;Yu, Jin-Hee;Oh, Eun-Song;Ahn, Ki-Beom;Hong, Jin-Suk;Lee, Jae-Min;Kim, Suk-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • We built 7 potential extra-terrestrial planets including the full 3D Earth model with various surface types and 6 planet models, each with uniform surface characteristics. The surface types include ice, tundra, forest, grass, ground and ocean. We then imported these 7 planets into integrated ray tracing(IRT) model to compute their disk averaged spectra and to understand the spectral behavior depending on the geometrical view, illumination phase and seasonal change. The IRT computation show that the 6 planets with uniform surfaces exhibit clear spectral differences from that of the Earth. We then built a phase and seasonal DAS database for the 6 uniform surface planets and used them for parametric spectral decomposition technique to derive the Earth DAS. This computation resulted in the first potential solution to the surface type ratio of the Earth compared to the measured earth surface type ratio. The computational details and the implications are discussed.

  • PDF

Numerical Study to Evaluate Course-Keeping Ability in Regular Waves Using Weather Vaning Simulation

  • Kim, In-Tae;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2021
  • Since the introduction of the mandatory energy efficiency design index (EEDI), several studies have been conducted on the maneuverability of waves owing to the decrease in engine power. However, most studies have used the mean wave force during a single cycle to evaluate maneuverability and investigated the turning performance. In this study, we calculated the external force in accordance with the angle of incidence of the wave width and wavelengths encountered by KVLCC2 (KRISO very large crude-oil carrier) operating at low speeds in regular waves using computational fluid dynamics (CFD). We compare the model test results with those published in other papers. Based on the external force calculated using CFD, an external force that varies according to the phase of the wave that meets the hull was derived, and based on the derived external force and MMG control simulation, a maneuvering simulation model was constructed. Using this method, a weather vaning simulation was performed in regular waves to evaluate the course-keeping ability of KVLCC2 in waves. The results confirmed that there was a difference in the operating trajectory according to the wavelength and phase of the waves encountered.

Learning fair prediction models with an imputed sensitive variable: Empirical studies

  • Kim, Yongdai;Jeong, Hwichang
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.251-261
    • /
    • 2022
  • As AI has a wide range of influence on human social life, issues of transparency and ethics of AI are emerging. In particular, it is widely known that due to the existence of historical bias in data against ethics or regulatory frameworks for fairness, trained AI models based on such biased data could also impose bias or unfairness against a certain sensitive group (e.g., non-white, women). Demographic disparities due to AI, which refer to socially unacceptable bias that an AI model favors certain groups (e.g., white, men) over other groups (e.g., black, women), have been observed frequently in many applications of AI and many studies have been done recently to develop AI algorithms which remove or alleviate such demographic disparities in trained AI models. In this paper, we consider a problem of using the information in the sensitive variable for fair prediction when using the sensitive variable as a part of input variables is prohibitive by laws or regulations to avoid unfairness. As a way of reflecting the information in the sensitive variable to prediction, we consider a two-stage procedure. First, the sensitive variable is fully included in the learning phase to have a prediction model depending on the sensitive variable, and then an imputed sensitive variable is used in the prediction phase. The aim of this paper is to evaluate this procedure by analyzing several benchmark datasets. We illustrate that using an imputed sensitive variable is helpful to improve prediction accuracies without hampering the degree of fairness much.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.