• Title/Summary/Keyword: 2-methyl-2-imidazoline

Search Result 5, Processing Time 0.017 seconds

Syntheses and Surface Active Properties of Amphoteric Surfactant(4);Syntheses of Sulfonated or Sulfated Derivatives from Imidazoline (양쪽성계면활성제의 유도체합성 및 계면성에 관한 연구(제4보);이미다졸린으로부터 유도된 술폰화 또는 황산화 유도체의 합성)

  • Ro, Y.C.;Kang, Y.S.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.121-127
    • /
    • 1994
  • 1-(2-hydroxyethyl)-2-undecyl-2-imidazoline[I] was converted into various types of sulfonated or sulfated amphoteric surfactants as following. 1-(2-hydroxyethyl)-1-(3-sulfonatedpropyl)-2-undecyl-2-imidazolium[III] 1-(2-sulfatedethyl)-1-methyl-2-undecyl-2-imidazolium[IV] 1-dioxylethylene methyl sulfonated-1-methyl-2-undecyl-2-imidazoliun[V] N-[N'-(2-hydroxyethyl)-N-(3-sulfonatedpropylammonio]ethyl dodecanoyl amide[VI] Mono sodium N-[N'-(2-hydroxyethyl)-N'-disulfonatedpropylammonio]ethyl dodecanoyl amide[VII] N-[N'-(2-hydroxyethyl-N'-(2-hydroxypropl-N'(3-sulfonatedpropyl)ammonio] ethyl dodecanoyl amide[VIII] The alkylimidazolines could be readily hydrolyzed to give amidoamines, but by quaternerization, hydrolysis stability of imidazoline and amide type amphoteric surfactantes were increased in the alkali and acid conditions. Also, at least three carbon chains introduce to the main group, water solubility was sparingly increased.

Influence of 3-(N-methyl-N-X(Sub.)Phenylaminooxoacetyl) Group on the Herbicidal Activity of Imazapyr Derivatives (Imazapyr 유도체의 제초활성에 미치는 3-(N-methyl-N(X)-치환-Phenylaminooxoacetyl) Group의 영향)

  • Sung, N.D.;Ryu, T.S.;Chang, H.S.;Kim, D.W.
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.516-521
    • /
    • 1994
  • New seventeen imazapyr derivatives, 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl)pyridine, 6 were synthesized and their pre-emergence herbicidal activity$(pI_{50})$ in vivo against Corn (Zea mays L.) and Pigweed (Amaranthus viridis L.) were studied by the pot test under paddly conditions. Quantitative structure activity relationships (QSARs) were analyzed using the physicochemical parameters of substituent(X) on the phenyl ring of 3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl) group and regression analysis. The herbicidal activities were related to the steric effect of X-substituent. The effect was rationalized by paraholic function of MR and $L_1$, where the optimal values were MR=5.56 (Zea mays L.) and $L_1=3.34\;{{\AA}}$ (Amaranthus viridis L.). Among them, 2,5-difluoro substituted compound, 6i showed good herbicidal activity against Pigweed with excellent tolerance to Corn.

  • PDF

Synthesis of Some New Biologically Active Benzothiazole Derivatives Containing Benzimidazole and Imidazoline Moieties

  • Chaudhary, Manish;Pareek, Deepak;Pareek, Pawan K.;Kant, Ravi;Ojha, Krishan G.;Pareek, Arun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.131-136
    • /
    • 2011
  • Synthesis of N-(1H-benzimidazol-2-yl)-6-substituted-1,3-benzothiazol-2-amines and 6-substituted-N-(4,5-dihydro-1H-imidazol-2-yl)-1,3-benzothiazol-2-amines by the reaction of substituted 2-aminobenzothiazoles with carbon disulphide and methyl iodide followed by the reaction with o-phenylene diamine/ethylene diamine are reported. All the synthesized compounds were characterized by elemental analysis, IR spectra and $^1H$ NMR spectral studies. The potent antibacterial and entomological (antifeedant, acaricidal, contact toxicity and stomach toxicity) activities of the synthesized compounds were investigated.

Synthesis, Characterization and Antimicrobial Activity of Novel Pharmacophores Incorporating Imidazoline-Oxazoline Scaffold

  • Barakat, Assem;Al-Majid, Abdullah Mohammed;Al-Qahatany, Faisal M.;Islam, Mohammad Shahidul;Al-Agamy, Mohamed H.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.562-568
    • /
    • 2014
  • In this work, synthesis, characterization and antimicrobial activity of series of imidazolines-oxazolines scaffolds 5a-f and 10a-d have been investigated. All the imidazolines-oxazolines derivatives were prepared from acid derivatives 1 and 6a-c, and enantiomerically pure (S)-2-amino-3-methyl-1-butanol in four steps with excellent optical purity. The structures of all newly synthesized compounds have been elucidated by $^1H$, $^{13}C$ NMR, GCMS, and IR spectrometry. Their purity was confirmed using elemental analysis. Some newly synthesized compounds were examined to in-vitro antimicrobial activity. Among the prepared products 10d was found to exhibits the most active against all tested bacteria and fungi with minimal inhibitory concentration (MIC) ranged between 21.9 and $42.6{\mu}g/mL$.

Comparison of peptide guanidination efficiency using various reaction conditions (다양한 조건에서 펩타이드의 Guanidination 변형 효율 비교 연구)

  • Park, Su-Jin;Koo, Kun-Mo;Kim, Jin-Hee;Kim, Jeong-Kwon
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • For the qualitative analysis of peptides in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), O-methylisourea, which is chemically bound to a specific site of an amino acid (e.g. lysine) of peptides and improves the intensities of the modified peptides, is frequently used prior to the MALDI-MS analysis of peptides, where the process is called guanidination. The reaction efficiency of guanidination varies depending on the reaction conditions. We investigated the efficiencies of guanidination of tryptically digested myoglobin using three different reagents (O-methylisourea, S-methylisothiourea, and 2-methyl-2-imidazoline) at $65^{\circ}C$ for 1 h with various pH conditions (pH 4.0, 7.0, and 10.5), where O-methylisourea and pH 10.5 were found to be most effective. The guanidination with O-methylisourea at pH 10.5 were then applied with different reaction conditions such as heating, microwave and ultrasound at various times, where heating for 60 min was found to be most effective. Conclusively, guanidination with O-methylisourea at $65^{\circ}C$ for 1 h at pH 10.5 was found to be the optimized condition.