• 제목/요약/키워드: 2-layer

검색결과 18,992건 처리시간 0.05초

분할유동차원 2층 대수층에서의 투수성, 층간흐름, 저류성의 효과 (Permeability, crossflow and storativity effects in two-layer aquifer system with fractional flow dimension)

  • 함세영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.81-84
    • /
    • 2000
  • Two-layer aquifer system with fractional flow dimension is composed of contiguous two layers: Layer 1 (lower layer) and Layer 2 (upper layer) with different permeability and specific storage each other. For this aquifer system, we assume that groundwater flow originates only from Layer 1 on the pumping well. The aquifer system considers wellbore storage and skin effects on the pumping well. Dimensionless drawdown curves for different flow dimensions are analyzed for different lambda (λ, crossflow coefficient) values, kappa ($textsc{k}$, permeability ratio between Layer 1 and Layer 2) values and omega ($\omega$, storativity ratio between Layer 1 and Layer 2) values. The curves for Layer 1 and Layer 2 show characteristic trend each other.

  • PDF

플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究) (A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip)

  • 이필우;서진석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제15권3호
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

고속 이동체에서 위성 광대역 인터넷 서비스를 위한 Cross Layer 부호화 방식 (A Study on Satellite Broadband Internet Services In High-Speed Vehicle)

  • 박태두;김민혁;김남수;김철승;정지원
    • 한국통신학회논문지
    • /
    • 제34권5C호
    • /
    • pp.485-497
    • /
    • 2009
  • 본 논문에서는 이동체에 대한 위성방송 및 인터넷 서비스를 지속적으로 제공하기 위해 기존의 DVB-S2 표준화에 DVB-H와 DVB-T를 결합한 새로운 DVB-S2M 표준화에 대한 연구를 하며, 여기서 생기는 deep fading을 극복하기 위한 방안에 대해 연구하였으며, 새로운 이동형 DVB-S2의 규격은 deep fading으로 인해 physical layer 부호화 방식과 upper layer 부호화 방식을 적용한 cross layer 부호화 방식을 적용시키고, DVB-S2 short frame의 부호화 방식을 physical layer 부호화 방식으로 고정시키고 upper layer 부호화 방식을 변화시키면서 성능 분석하였다. 아울러 이동체의 속도에 따라, 데이터 전송속도, 그리고 packet size에 따라 성능 분석하였다.

Fabrication of $TiO_2$ Blocking Layers for CuSCN Based Dye-Sensitized Solar Cells by Atomic Layer Deposition Method

  • 백장미;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.310.2-310.2
    • /
    • 2013
  • For enhancement of dye-sensitized solar cell performance, TiO2 blocking layer has been used to prevent recombination between electron and hole at the conducting oxide and electrolyte interface. In solid state dye-sensitized solar cells, it is necessary to fabricate pin-hole free TiO2 blocking layer. In this work, we deposited the TiO2 blocking layer on conducting oxide by atomic layer deposition and compared the efficiency. To compare the efficiency, we fabricate solid state dye-sensitized solar cell with using CuSCN as hole transport material. We see the efficiency improve with 40nm TiO2 blocking layer and the TiO2 blocking layer morphology was characterized by SEM. Also, we used this blocking layer in TiO2/Sb2S3/ CuSCN solar cell.

  • PDF

50% NH3-Air-N2가스분위기에서 Oxynitriding시 Compound Layer의 성장 특성에 미치는 공기첨가효과 (Effect of Air Additions on the Growth Characteristics of the Compound Layer during Oxynitriding in50%NH3+Air+N2 Atmosphere)

  • 김영희;이영숙
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.206-218
    • /
    • 1994
  • In 50%$NH_3+Air+N_2$ atmospheres, the effect of air additions on the growth characteristics of the compound layer during oxynitriding at $570^{\circ}C$ for 2hr in carbon and alloy steels has been investigated. The ammount of apparent residual ammonia during oxynitriding has shown to be increased with air additions(9~36 Vol. %) and X-ray diffraction analysis of case oxynitreded has shown that the compound layer consist of ${\varepsilon}-Fe_{2-3}$(N, C) phase and ${\gamma}^{\prime}-Fe_4$(N,C) phase. In the case of carbon steels, the thickness of oxide layer, compound layer and porous layer and the amount of ${\varepsilon}-Fe_{2-3}$(N,C) phase in the compound layer were increased with additions of air in 50%$NH_3+N_2$ atmospheres. At the same gas composition, the thickenss of oxide layer, compound layer and porous layer in alloy steels showed slightly thin layer thickness compared to those of carbon steels and the ${\gamma}^{\prime}-Fe_4$(N,C) phase in the compound layer of alloy steels was found barely. Therefore, the most obvious effect of air addition in the gas nitriding atmosphere has been found to in crease further kinetics of nitriding reaction.

  • PDF

Nitric Acid를 이용한 SiNx/SiO2 Double Layer Passivation

  • 최재우;김현엽;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.405-405
    • /
    • 2011
  • 실리콘 질화막(SiNx : H)는 결정질 실리콘 태양전지 제작 공정에서 ARC (Anti Reflection Coating)과 표면 패시베이션의 역할로써 많이 사용되었지만, layer 자체의 quality가 좋지 않기 때문에 최근에는 SiNx/SiO2 이중 layer로 passivation layer를 형성하고 있다. SiO2 layer는 Si substrate를 소스로 하여 성장시키기 때문에 막의 질이 우수하기는 하지만, 막 성장을 위해서 Furnace를 이용해야 하기 때문에, 공정 시간과 공정 비용을 증가시키는 단점이 있다. 본 연구에서는 SiO2 layer를 Furnace가 아닌, 질산(HNO3)을 이용하여SiNx/Thin SiO2 passivation layer 제작하였다. 실험에서는 SiO2 성장을 위해서 질산 용액에 p-type wafer를 dipping하여 시간대 별, SiO2 막의 두께를 관찰하였고, passivation의 효과를 확인하기 위해 lifetime을 측정하였다. 그 결과 SiNx/SiO2 이중 passivation layer는 SiNx 단일 막으로 passivation을 하였을 때보다, lifetime이 10 us 상승했고, 셀 제작시 효율은 약 1.1%, Fill Factor는 약 4% 정도 증가한 것을 확인할 수 있었다.

  • PDF

Layer-by-Layer 증착법으로 제작한 $B_2$Sr_2$$Ca_{n-1}$$Cu_n$$O_x$초전도 박막의 특성 (Characteristics of $B_2$Sr_2$$Ca_{n-1}$$Cu_n$$O_x$ Superconducting Thin Films Fabricated by Layer-by-Layer Deposition Method)

  • 유선종;천민우;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.518-521
    • /
    • 2003
  • Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_{n}$O$_{x}$ superconducting thin films have been fabricated by atomic layer-by-layer deposition using IBS(Ion Beam Sputtering) method. During the deposition, 90 mol% ozone gas of typical pressure of 1~9 $\times$ 10$^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.grown.

  • PDF

실리콘 질화막의 산화 (The oxidation of silicon nitride layer)

  • 정양희;이영선;박영걸
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권3호
    • /
    • pp.231-235
    • /
    • 1994
  • The multi-dielectric layer $SiO_2$/$Si_3{N_4}$/$SiO_2$ (ONO) is used to improve charge retention and to scale down the memory device. The nitride layer of MNOS device is oxidize to form ONO system. During the oxidation of the nitride layer, the change of thickness of nitride layer and generation of interface state between nitride layer and top oxide layer occur. In this paper, effects of oxidation of the nitride layer is studied. The decreases of the nitride layer due to oxidation and trapping characteristics of interface state of multi layer dielectric film are investigated through the C-V measurement and F-N tunneling injection experiment using SONOS capacitor structure. Based on the experimental results, carrier trapping model for maximum flatband voltage shift of multi layer dielectric film is proposed and compared with experimental data. As a results of curve fitting, interface trap density between the top oxide and layer is determined as being $5{\times}10^11$~$2{\times}10^12$[$eV^1$$cm^2$].

  • PDF

보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향 (Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer)

  • 정영철;전본근;석전성
    • 센서학회지
    • /
    • 제9권5호
    • /
    • pp.389-395
    • /
    • 2000
  • 본 논문에서는 보호용 실리콘 산화층과 Al 층을 이용한 $Al_2O_3$ 예비층의 형성을 제안하였다. 실리콘 기판 위의 보호용 산화막 위에 알루미늄을 증착하고 이를 $800^{\circ}C$에서 열처리함으로써 에피텍시 $Al_2O_3$ 예비층 형성시킬 수 있었다. 그리고 형성된 $Al_2O_3$ 예비층위에 ${\gamma}-Al_2O_3$ 층을 형성하였다. ${\gamma}-Al_2O_3$막 성장시 공정의 초기 상태에서 발생하는 $N_2O$ 가스에 의한 Si 기판의 식각을 $Al_2O_3$ 예비층을 이용함으로써 방지할 수 있었다. $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$의 표면의 형태를 개선하는데 많은 효과가 있었다.

  • PDF

Efficiency and Lifetime Improvement of Organic Light- Emitting Diodes with a Use of Lithium-Carbonate- Incorportated Cathode Structure

  • Mok, Rang-Kyun;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.60-63
    • /
    • 2012
  • Enhancement of efficiency and luminance of organic light-emitting diodes was investigated by the introduction of a lithium carbonate ($Li_2CO_3$) electron-injection layer. Electron-injection layer is used in organic light-emitting diodes to inject electrons efficiently between a cathode and an organic layer. A device structure of ITO/TPD (40 nm)/$Alq_3$ (60 nm)/$Li_2CO_3$ (x nm)/Al (100 nm) was manufactured by thermal evaporation, where the thickness of $Li_2CO_3$ layer was varied from 0 to 3.3 nm. Current density-luminance-voltage characteristics of the device were measured and analyzed. When the thickness of $Li_2CO_3$ layer is 0.7 nm, the current efficiency and luminance of the device at 8.0 V are improved by a factor of about 18 and 3,000 compared to the ones without the $Li_2CO_3$ layer, respectively. The enhancement of efficiency and luminance of the device with an insertion of $Li_2CO_3$ electron-injection layer is thought to be due to the lowering of an electron barrier height at the interface region between the cathode and the emissive layer. This is judged from an analysis of current density-voltage characteristics with a Fowler-Nordheim tunneling conduction mechanism model. In a study of lifetime of the device that depends on the thickness of $Li_2CO_3$ layer, the optimum thickness of $Li_2CO_3$ layer was obtained to be 1.1 nm. It is thought that an improvement in the lifetime is due to the prevention of moisture and oxygen by $Li_2CO_3$ layer. Thus, from the efficiency and lifetime of the device, we have obtained the optimum thickness of $Li_2CO_3$ layer to be about 1.0 nm.