• Title/Summary/Keyword: 2-edges connected graph

Search Result 25, Processing Time 0.024 seconds

Proposal of Minimum Spanning Tree Algorithm using 2-Edges Connected Grap (2-간선 연결 그래프를 사용한 최소신장트리 알고리즘 제안)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.

ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

  • Lu, Zai Ping;Song, Ning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.763-787
    • /
    • 2017
  • A graph is called 1-planar if it can be drawn in the Euclidean plane ${\mathbb{R}}^2$ such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree ${\delta}{\geq}3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

ON THE MONOPHONIC NUMBER OF A GRAPH

  • Santhakumaran, A.P.;Titus, P.;Ganesamoorthy, K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.255-266
    • /
    • 2014
  • For a connected graph G = (V,E) of order at least two, a set S of vertices of G is a monophonic set of G if each vertex v of G lies on an x - y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G, denoted by m(G). Certain general properties satisfied by the monophonic sets are studied. Graphs G of order p with m(G) = 2 or p or p - 1 are characterized. For every pair a, b of positive integers with $2{\leq}a{\leq}b$, there is a connected graph G with m(G) = a and g(G) = b, where g(G) is the geodetic number of G. Also we study how the monophonic number of a graph is affected when pendant edges are added to the graph.

AN EFFICIENT ALGORITHM TO SOLVE CONNECTIVITY PROBLEM ON TRAPEZOID GRAPHS

  • Ghosh, Prabir K.;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.141-154
    • /
    • 2007
  • The connectivity problem is a fundamental problem in graph theory. The best known algorithm to solve the connectivity problem on general graphs with n vertices and m edges takes $O(K(G)mn^{1.5})$ time, where K(G) is the vertex connectivity of G. In this paper, an efficient algorithm is designed to solve vertex connectivity problem, which takes $O(n^2)$ time and O(n) space for a trapezoid graph.

PEBBLING EXPONENTS OF PATHS

  • Kim, Ju-Young;Kim, Sun-Ah
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.769-776
    • /
    • 2010
  • A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. For a connected graph G, $G^p$ (p > 1) is the graph obtained from G by adding the edges (u, v) to G whenever 2 $\leq$ dist(u, v) $\leq$ p in G. And the pebbling exponent of a graph G to be the least power of p such that the pebbling number of $G^p$ is equal to the number of vertices of G. We compute the pebbling number of fourth power of paths so that the pebbling exponents of some paths are calculated.

FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS

  • Shuchao Li;Wanting Sun;Wei Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.959-986
    • /
    • 2023
  • Zhai and Lin recently proved that if G is an n-vertex connected 𝜃(1, 2, r + 1)-free graph, then for odd r and n ⩾ 10r, or for even r and n ⩾ 7r, one has ${\rho}(G){\leq}{\sqrt{{\lfloor}{\frac{n^2}{4}}{\rfloor}}}$, and equality holds if and only if G is $K_{{\lceil}{\frac{n}{2}}{\rceil},{\lfloor}{\frac{n}{2}}{\rfloor}}$. In this paper, for large enough n, we prove a sharp upper bound for the spectral radius in an n-vertex H-free non-bipartite graph, where H is 𝜃(1, 2, 3) or 𝜃(1, 2, 4), and we characterize all the extremal graphs. Furthermore, for n ⩾ 137, we determine the maximum number of edges in an n-vertex 𝜃(1, 2, 4)-free non-bipartite graph and characterize the unique extremal graph.

Hamiltonian Paths in Restricted Hypercube-Like Graphs with Edge Faults (에지 고장이 있는 Restricted Hypercube-Like 그래프의 해밀톤 경로)

  • Kim, Sook-Yeon;Chun, Byung-Tae
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.225-232
    • /
    • 2011
  • Restricted Hypercube-Like (RHL) graphs are a graph class that widely includes useful interconnection networks such as crossed cube, Mobius cube, Mcube, twisted cube, locally twisted cube, multiply twisted cube, and generalized twisted cube. In this paper, we show that for an m-dimensional RHL graph G, $m{\geq}4$, with an arbitrary faulty edge set $F{\subset}E(G)$, ${\mid}F{\mid}{\leq}m-2$, graph $G{\setminus}F$ has a hamiltonian path between any distinct two nodes s and t if dist(s, V(F))${\neq}1$ or dist(t, V(F))${\neq}1$. Graph $G{\setminus}F$ is the graph G whose faulty edges are removed. Set V(F) is the end vertex set of the edges in F and dist(v, V(F)) is the minimum distance between vertex v and the vertices in V(F).

EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS

  • ASHRAFI, ALI REZA;DEHGHAN-ZADEH, TAYEBEH;HABIBI, NADER
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.283-295
    • /
    • 2015
  • The atom-bond connectivity index of a graph G (ABC index for short) is defined as the summation of quantities $\sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}}$ over all edges of G. A cactus graph is a connected graph in which every block is an edge or a cycle. The aim of this paper is to obtain the first and second maximum values of the ABC index among all n vertex cactus graphs.

Hamiltonian Connectedness of Grid Graph wish Two Wraparound Edges (두개의 랩어라운드 에지를 갖는 그리드 그래프의 해밀톤 연결성)

  • 이지연;박경욱;임형석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.670-672
    • /
    • 2002
  • 본 논문에서는 2개의 랩어라운드 에지를 갖는 m$\times$n(m 2, n$\geq$3, n 흘수) 그리드 그래프에서의 해밀톤 성질을 고려한다. 먼저 그리드 그래프가 해밀톤 연결된(hamiltonian-connected)그래프가 되기 위해 추가로 필요한 에지의 수가 2개 이상임을 보인다. 그리고 m$\times$n 그리드 그래프의 첫 행에 랩어라운드 에지를 추가한 그래프의 해밀톤 성질을 보인 후, m$\times$n 그리드 그래프의 첫 행과 마지막 행에 램어라운드 에지를 추가한 그래프가 해밀톤 연결된 그래프임을 보인다.

  • PDF

On Diameter, Cyclomatic Number and Inverse Degree of Chemical Graphs

  • Sharafdini, Reza;Ghalavand, Ali;Ashrafi, Ali Reza
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.467-475
    • /
    • 2020
  • Let G be a chemical graph with vertex set {v1, v1, …, vn} and degree sequence d(G) = (degG(v1), degG(v2), …, degG(vn)). The inverse degree, R(G) of G is defined as $R(G)={\sum{_{i=1}^{n}}}\;{\frac{1}{deg_G(v_i)}}$. The cyclomatic number of G is defined as γ = m - n + k, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, some upper bounds on the diameter of a chemical graph in terms of its inverse degree are given. We also obtain an ordering of connected chemical graphs with respect to the inverse degree.