• Title/Summary/Keyword: 2-dimensional transformation

Search Result 264, Processing Time 0.028 seconds

Certain Models of the Lie Algebra 𝒦5 and Their Connection with Special Functions

  • Yadav, Sarasvati;Rani, Geeta
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.615-625
    • /
    • 2018
  • In this paper, we discuss the connection between the 5-dimensional complex Lie algebra ${\mathcal{K}} _5$ and Special functions. We construct certain two variable models of the irreducible representations of ${\mathcal{K}}_5$. We also use an Euler type integral transformation to obtain the new transformed models, in which the basis function appears as $_2F_1$. Further, we utilize these models to get some generating functions and recurrence relations.

SOME INTEGRATIONS ON NULL HYPERSURFACES IN LORENTZIAN MANIFOLDS

  • Massamba, Fortune;Ssekajja, Samuel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.229-243
    • /
    • 2019
  • We use the so-called pseudoinversion of degenerate metrics technique on foliated compact null hypersurface, $M^{n+1}$, in Lorentzian manifold ${\overline{M}}^{n+2}$, to derive an integral formula involving the r-th order mean curvatures of its foliations, ${\mathcal{F}}^n$. We apply our formula to minimal foliations, showing that, under certain geometric conditions, they are isomorphic to n-dimensional spheres. We also use the formula to deduce expressions for total mean curvatures of such foliations.

Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images (강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험)

  • Jeon, Min-Cheol;Eo, Yang-Dam;Han, Dong-Yeob;Kang, Nam-Gi;Pyeon, Mu-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • This study used the keypoint observed simultaneously on two images and on twodimensional intensity image data, which was obtained along with the two point clouds data that were approached for automatic focus among points on terrestrial LiDAR data, and selected matching point through SIFT algorithm. Also, for matching error diploid, RANSAC algorithm was applied to improve the accuracy of focus. As calculating the degree of three-dimensional rotating transformation, which is the transformation-type parameters between two points, and also the moving amounts of vertical/horizontal, the result was compared with the existing result by hand. As testing the building of College of Science at Konkuk University, the difference of the transformation parameters between the one through automatic matching and the one by hand showed 0.011m, 0.008m, and 0.052m in X, Y, Z directions, which concluded to be used as the data for automatic focus.

A Study on the Vegetation Pattern Using Two-Dimensional Spectral Analysis (2 次元 스펙트럼法을 이용한 植生類型에 대한 硏究)

  • Park, Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.13 no.2
    • /
    • pp.83-92
    • /
    • 1990
  • Two-dimensional analysis provides a comprehensive description of the structure, scales of pattern and directional components in a spatial data set. In spectral analysisi, four functions are illustrated,; the autocorrelation, the periodogram, the R-spectrum and the $\theta$ -spectrum. The R-spectrum and $\theta$ -spectrum function respectively summarize the periodogram in term of scale of pattern and directional components. Sampling is measured in the Naejang National Park area where the Daphniphyllum trees grow. 320 contiguous (15$\times$15)m plots are located along the transect and density of all trees over DBH 3 cm recorded respectively. 12 species of vascular plant are recorded in this survey area. The trend surface of density of all plant are estimated using polynomial regression and are exhibited in 3-dimensional graph and density contour map. Transformation to the corresponding polar spectrum from the periodogram emphasized the directional components and the scales to pattern. R-spectrum corresponding to the scale of pattern of periodogram showed a large peak 15.47 in the interval 9$\theta$-spectrum corresponding to directional components have two peaks 8.28 and 11.05 in the interval $35^{\circ}\theta <45^{\circ}and 125^{\circ}\theta< <135^{\circ}, respectively. Programs to compute all the analyses described in this study was obtained from Dr. Ranshow and was translated to BASIC by the author.

  • PDF

The impact analysis of interface crack in dissimilar materials using the 2-D laplace transformed BEM (2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석)

  • 김태규;조상봉;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1158-1168
    • /
    • 1994
  • For BEM analyses of the impact problems of dissimilar materials, the connected multi-region method using perfect bonded conditions on the interface boundaries was added to two-dimensional Laplace transformed-domain BEM program for a single region analysis. It was confirmed that the BEM results of impact problems of a single-region and multi-regions for a homogeneous isotropic material are agreed well. The two-dimensional Laplace transformed-domain BEM program combined with connected multi-region method was applied to analyse several impact problems of dissimilar materials. Also the feasibility of BEM impact analyses was investigated for dissimilar materials by the analysis of the BEM results for impact problems of dissimilar materials in terms of physical aspects. As for an application, the two-dimensional Laplace transformed BEM concerning impact problems of cracks at the interface of dissimilar materials and the determinating process of the dynamic stress intensity factors by extrapolation method are presented in this paper.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

Deep Learning based Frame Synchronization Using Convolutional Neural Network (합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법)

  • Lee, Eui-Soo;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.501-507
    • /
    • 2020
  • This paper proposes a new frame synchronization technique based on convolutional neural network (CNN). The conventional frame synchronizers usually find the matching instance through correlation between the received signal and the preamble. The proposed method converts the 1-dimensional correlator ouput into a 2-dimensional matrix. The 2-dimensional matrix is input to a convolutional neural network, and the convolutional neural network finds the frame arrival time. Specifically, in additive white gaussian noise (AWGN) environments, the received signals are generated with random arrival times and they are used for training data of the CNN. Through computer simulation, the false detection probabilities in various signal-to-noise ratios are investigated and compared between the proposed CNN-based technique and the conventional one. According to the results, the proposed technique shows 2dB better performance than the conventional method.

Positioning of Cadastral Control Points Using GPS (GPS에 의한 지적측량기준점의 위치해석)

  • 강준묵;김홍진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.209-218
    • /
    • 1996
  • This study aims to draw a technique for practical using of GPS surveying to decide the positions of cadastrial control points. GPS surveying is carried out at cadastrial triangulation points and supplementary control points. This paper includes characteristics of transformation of WGS84 into Tokyo datum, two dimensional solutions for GPS baseline vector, and combined solutions of both GPS and terrestrial data. As a results of this study, it is verifiable that GPS surveying is very efficient to check the existing control network. 2-D network adjustment technique using GPS baseline vector is applicable to Tokyo datum without coordinate transformation. And it is expected to improve efficiency by using either rapid-static or stop and go kinematic surveying in cadastrial surveying at small areas.

  • PDF

Dual-tree Wavelet Discrete Transformation Using Quincunx Sampling For Image Processing (디지털 영상 처리를 위한 Quincunx 표본화가 사용된 이중 트리 이산 웨이브렛 변환)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.119-131
    • /
    • 2011
  • In this paper, we explore the application of 2-D dual-tree discrete wavelet transform (DDWT), which is a directional and redundant transform, for image coding. DDWT main property is a more computationally efficient approach to shift invariance. Also, the DDWT gives much better directional selectivity when filtering multidimensional signals. The dual-tree DWT of a signal is implemented using two critically-sampled DWTs in parallel on the same data. The transform is 2-times expansive because for an N-point signal it gives 2N DWT coefficients. If the filters are designed is a specific way, then the sub-band signals of the upper DWT can be interpreted as the real part of a complex wavelet transform, and sub-band signals of the lower DWT can be interpreted as the imaginary part. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Quincunx lattice yields a non separable 2D-wavelet transform, which is also symmetric in both horizontal and vertical direction. And non-separable wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, non-separable image processing using DDWT services good performance.

Face Recognition using Wavelet Transform and 2D PCA (웨이브릿 변환과 2D PCA를 이용한 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Chang, Un-Dong;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.348-351
    • /
    • 2004
  • In this paper, we propose the face recognition method using Harr wavelet transform and 2D PCA. While previous PCA computed the covariance matrix by using one dimensional vectors, 2D PCA computed the covarinace matrix by using direct two dimensional image and extracted feature vector by solving eigenvalue problem. To gain the face image having the low dimension and robust property, the proposed method uses wavelet transformation. We apply the LL band image data to 2D PCA for face recognition. The experimental results indicate that our method improves recognition rate than 2D PCA into original image.

  • PDF